evaluator.py 24.8 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import logging
Baber Abbasi's avatar
Baber Abbasi committed
3
import random
4
import time
5
6
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
7

8
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
9
import torch
lintangsutawika's avatar
lintangsutawika committed
10

lintangsutawika's avatar
lintangsutawika committed
11
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.registry
13
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
14
import lm_eval.models
15
from lm_eval.caching.cache import delete_cache
16
17
18
19
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
    get_task_list,
20
    prepare_print_tasks,
21
22
23
    print_writeout,
    run_task_tests,
)
24
from lm_eval.logging_utils import add_env_info, get_git_commit_hash
25
26
27
28
29
30
from lm_eval.tasks import (
    ConfigurableGroup,
    ConfigurableTask,
    TaskManager,
    get_task_dict,
)
31
from lm_eval.utils import eval_logger, positional_deprecated, simple_parse_args_string
32

Fabrizio Milo's avatar
Fabrizio Milo committed
33

34
35
36
37
38
if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task


39
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
40
41
def simple_evaluate(
    model,
42
43
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
44
45
46
47
48
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
49
50
51
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
52
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
53
54
55
56
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
57
58
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
59
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
60
    predict_only: bool = False,
61
62
63
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
64
):
65
    """Instantiate and evaluate a model on a list of tasks.
66

67
68
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
69
70
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
71
        Ignored if `model` argument is a LM object.
72
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
73
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
74
75
    :param num_fewshot: int
        Number of examples in few-shot context
76
    :param batch_size: int or str, optional
77
        Batch size for model
78
79
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
80
    :param device: str, optional
81
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
82
83
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
84
85
86
87
88
89
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
90
91
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
92
93
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
94
95
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
96
    :param write_out: bool
97
98
99
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
100
101
102
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
103
104
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
105
106
107
108
109
110
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
Baber Abbasi's avatar
Baber Abbasi committed
111

112
    :return
113
        Dictionary of results
114
    """
115
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
116
    start_date = time.time()
117

118
119
120
121
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

122
    seed_message = []
123
124
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
125
        seed_message.append(f"Setting random seed to {random_seed}")
126
127
128
        random.seed(random_seed)

    if numpy_random_seed is not None:
129
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
130
131
132
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
133
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
134
135
        torch.manual_seed(torch_random_seed)

136
137
138
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

139
140
    if tasks is None:
        tasks = []
141
142
143
144
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
145

lintangsutawika's avatar
lintangsutawika committed
146
147
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
148
        eval_logger.warning(
149
150
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
151
        )
lintangsutawika's avatar
lintangsutawika committed
152
153
154
        if gen_kwargs == "":
            gen_kwargs = None

155
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
156
        if model_args is None:
157
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
158
            model_args = ""
159
160
161
162
163
164
165
166
167
        if "pretrained" not in model_args and model in [
            "hf-auto",
            "hf",
            "huggingface",
            "vllm",
        ]:
            eval_logger.warning(
                "pretrained not specified. Using default pretrained=gpt2."
            )
168

169
        if isinstance(model_args, dict):
170
171
172
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
173
174
175
176
177
178
179
180
181
182
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
183
184
185
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
186
187
188
189
190
191
192
193
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
194
    else:
195
196
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
197
        eval_logger.info("Using pre-initialized model")
198
        lm = model
199

haileyschoelkopf's avatar
haileyschoelkopf committed
200
    if use_cache is not None:
201
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
202
203
204
205
206
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
207
208
209
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
210
211
        )

212
213
214
    if check_integrity:
        run_task_tests(task_list=tasks)

215
216
217
218
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
219

220
    def _adjust_config(task_dict):
221
222
223
224
225
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
226
                    **{task_name: _adjust_config(task_obj)},
227
                }
Stephen Hogg's avatar
Stephen Hogg committed
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
            else:
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
257
258
259
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
260
                        task_obj.set_config(key="num_fewshot", value=0)
261

262
263
264
265
266
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
267
268
269
270
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
271
272
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
273
        bootstrap_iters=bootstrap_iters,
274
        write_out=write_out,
275
        log_samples=True if predict_only else log_samples,
276
        verbosity=verbosity,
277
    )
278

279
    if lm.rank == 0:
280
281
282
283
284
285
286
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

287
288
        # add info about the model and few shot config
        results["config"] = {
289
            "model": model_name,
290
291
            "model_args": model_args,
            "batch_size": batch_size,
292
293
294
            "batch_sizes": (
                list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
            ),
295
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
296
            "use_cache": use_cache,
297
298
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
lintangsutawika's avatar
lintangsutawika committed
299
            "gen_kwargs": gen_kwargs,
300
        }
301
        results["git_hash"] = get_git_commit_hash()
302
        results["date"] = start_date
303
        add_env_info(results)  # additional environment info to results
304
305
306
        return results
    else:
        return None
307

Leo Gao's avatar
Leo Gao committed
308

309
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
310
def evaluate(
311
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
312
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
313
    limit: Optional[int] = None,
314
315
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
316
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
317
318
    write_out: bool = False,
    log_samples: bool = True,
319
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
320
):
321
322
323
324
325
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
326
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
327
328
329
330
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
331
    :param write_out: bool
332
333
334
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
335
336
337
    :return
        Dictionary of results
    """
338

339
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
340

341
    # tracks all Instances/requests a model must generate output on.
342
    requests = defaultdict(list)
343
344
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
345
    padding_requests = defaultdict(int)
346

347
    # get lists of group hierarchy and each type of request
348
    eval_tasks = get_task_list(task_dict)
349
    if not log_samples:
350
        if not all(
351
352
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
353
354
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
355
356
357
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
358
359
360
361
362
363
364
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
        )
365
        eval_logger.debug(
366
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
367
368
369
        )

        if write_out:
370
            print_writeout(task)
371
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
372
373
374
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
375
376

        if lm.world_size > 1:
377
378
379
380
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
381
382
383
384
385
386
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
387
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
388
            numpad = max(gathered_item) - gathered_item[lm.rank]
389
390
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
391

392
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
393
394
    # execute each type of request
    for reqtype, reqs in requests.items():
395
        eval_logger.info(f"Running {reqtype} requests")
396
397
398
399
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
400

401
402
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
403
404
                cloned_reqs.extend([req] * req.repeats)

405
406
407
408
409
410
411
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

412
413
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
414

415
416
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
417
418
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
419
420
    for task_output in eval_tasks:
        task = task_output.task
421
422
        task.apply_filters()

423
424
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
425
        # TODO: make it possible to use a different metric per filter
426
        # Pre-process task.instances to group by doc_id
427
        instances_by_doc_id = defaultdict(list)
428
429
430
431
432
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
433
        # iterate over different filters used
434
435
436
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
437
            )
438
            for doc_id, doc in doc_iterator:
439
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
440
                metrics = task.process_results(
441
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
442
                )
443
444
445
446
447
448
449
450
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
451
452
453
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
454
455
                    }
                    example.update(metrics)
456
                    task_output.logged_samples.append(example)
457
                for metric, value in metrics.items():
458
                    task_output.sample_metrics[(metric, filter_key)].append(value)
459

460
461
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
462
        # first gather logged samples across all ranks
463
464
465
466
467
468
469
470
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
471
                )
472

473
474
475
476
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
477

478
479
480
481
482
483
484
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
485
                )
486
487
488
489
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
490

491
    if RANK == 0:
492
493
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
494
495
496
497
498
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
        results, samples, configs, versions, num_fewshot = consolidate_results(
            eval_tasks
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
499

500
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
501
        if bool(results):
502

503
504
505
506
507
508
509
            def process_group(
                results,
                task_dict,
                task_root=None,
                task_hierarchy=None,
                show_group_table=False,
            ):
510
511
512
513
514
515
516
                if task_root is None:
                    task_root = {}

                if task_hierarchy is None:
                    task_hierarchy = {}

                for group_or_task, group_or_task_info in task_dict.items():
517
518
519
520
521
522
523
524
525
526
                    if isinstance(group_or_task, ConfigurableGroup):
                        group_config = group_or_task.config
                        group_or_task = group_or_task.group
                        show_group_table = (
                            show_group_table | group_config["aggregate_metric"]
                        )
                        if group_config["aggregate_metric"] is False:
                            results[group_or_task][" "] = " "
                            continue

527
528
                    if isinstance(group_or_task_info, ConfigurableTask):
                        if task_root:
529
530
531
                            task_hierarchy.setdefault(task_root, []).append(
                                group_or_task
                            )
532
                    else:
533
534
535
536
537
538
539
                        results, _task_hierarchy, show_group_table = process_group(
                            results,
                            group_or_task_info,
                            group_or_task,
                            task_hierarchy,
                            show_group_table,
                        )
540
                        if task_root:
541
542
543
                            task_hierarchy.setdefault(task_root, []).extend(
                                task_hierarchy.get(group_or_task, [])
                            )
544
545
546
547
548
549
550

                        task_list = _task_hierarchy[group_or_task]
                        metric_list = list(
                            {
                                key
                                for task in task_list
                                for key in results[task].keys()
551
552
                                if "_stderr" not in key
                                and key not in ["alias", "samples"]
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                            }
                        )
                        for metric in metric_list:
                            stderr = "_stderr,".join(metric.split(","))

                            # gather metrics, sizes, and stderrs from subtasks
                            metrics = [
                                results[task][metric]
                                for task in task_list
                                if metric in results[task]
                            ]  # TODO: copy?
                            stderrs = [
                                results[task][stderr]
                                for task in task_list
                                if stderr in results[task]
                            ]
                            sizes = [
                                results[task]["samples"]
                                for task in task_list
                                if metric in results[task]
                            ]

                            # compute group's pooled metric and stderr
576
                            results[group_or_task][
577
578
579
580
581
582
583
584
                                metric
                            ] = lm_eval.api.metrics.aggregate_subtask_metrics(
                                metrics,
                                sizes,
                                group_config["weight_by_size"],
                            )
                            # TODO: calculate grouped metric using aggregation fn
                            if "N/A" in stderrs:
585
                                results[group_or_task][stderr] = "N/A"
586
                            else:
587
                                results[group_or_task][
588
                                    stderr
589
590
591
                                ] = lm_eval.api.metrics.pooled_sample_stderr(
                                    stderrs, sizes
                                )
592
593
594
595
                                # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                                # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                                # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)

596
                            results[group_or_task]["samples"] = sum(sizes)
597
598
                return results, task_hierarchy, show_group_table

599
600
601
602
            results, task_hierarchy, show_group_table = process_group(
                results, task_dict
            )

603
        results_agg, group_agg = prepare_print_tasks(task_dict, results)
604
        results_dict = {
605
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
606
607
608
609
610
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
611
            "group_subtasks": dict(reversed(task_hierarchy.items())),
612
613
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
614
            "n-shot": dict(sorted(num_fewshot.items())),
615
        }
616
617
618
619
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
620

621
622
    else:
        return None
623
624
625
626


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
627
628
629
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
630
631
632
    }

    return request_caching_args