evaluator.py 30.6 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
from collections import defaultdict
7
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
29
from lm_eval.tasks import TaskManager, get_task_dict
30
from lm_eval.utils import (
Baber's avatar
Baber committed
31
    get_logger,
32
33
34
35
36
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
37

Fabrizio Milo's avatar
Fabrizio Milo committed
38

39
40
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
41
    from lm_eval.api.task import Task
42

Lintang Sutawika's avatar
Lintang Sutawika committed
43
44
eval_logger = logging.getLogger(__name__)

45

46
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
47
def simple_evaluate(
48
49
50
51
52
53
54
55
56
57
58
59
60
    model,
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
    num_fewshot: Optional[int] = None,
    batch_size: Optional[Union[int, str]] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
    limit: Optional[Union[int, float]] = None,
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
61
    bootstrap_iters: int = 100000,
62
63
64
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
    evaluation_tracker: Optional[EvaluationTracker] = None,
66
67
68
69
    system_instruction: Optional[str] = None,
    apply_chat_template: Union[bool, str] = False,
    fewshot_as_multiturn: bool = False,
    gen_kwargs: Union[str, dict, None] = None,
70
    task_manager: Optional[TaskManager] = None,
71
72
73
74
75
76
77
78
    verbosity=None,
    predict_only: bool = False,
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
    fewshot_random_seed: int = 1234,
    confirm_run_unsafe_code: bool = False,
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
):
80
    """Instantiate and evaluate a model on a list of tasks.
81

82
83
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
84
85
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
86
        Ignored if `model` argument is a LM object.
87
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
88
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
89
90
    :param num_fewshot: int
        Number of examples in few-shot context
91
    :param batch_size: int or str, optional
92
        Batch size for model
93
94
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
95
    :param device: str, optional
96
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
99
100
101
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
102
        Rewrites all the request cache if set to `True`. `None` if not desired.
103
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
104
        Deletes all the request cache if set to `True`. `None` if not desired.
105
106
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
107
108
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
109
    :param bootstrap_iters:
110
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
111
112
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
113
    :param write_out: bool
114
115
116
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
117
118
    :param system_instruction: str
        System instruction to be applied to the prompt
119
120
121
122
123
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
124
125
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
126
127
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
128
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
129
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
130
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
133
134
135
136
137
138
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
139
140
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
141
142
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
143

Baber Abbasi's avatar
Baber Abbasi committed
144
    return
145
        Dictionary of results
146
    """
147
    if verbosity is not None:
Baber's avatar
Baber committed
148
        get_logger(verbosity)
149
    start_date = time.time()
150

151
    if limit is not None and samples is not None:
152
153
154
155
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

156
157
158
159
160
161
162
    if (
        (isinstance(model_args, str) and "inst" in model_args.lower())
        or (
            isinstance(model_args, dict)
            and any("inst" in str(v).lower() for v in model_args.values())
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
163
        eval_logger.warning(
164
            "Model appears to be an instruct variant but chat template is not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
Baber Abbasi's avatar
Baber Abbasi committed
165
166
        )

167
    if delete_requests_cache:
168
169
170
        eval_logger.info("Deleting requests cache...")
        delete_cache()

171
    seed_message = []
172
    if random_seed is not None:
173
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
174
175
        seed_message.append(f"Setting random seed to {random_seed}")
        random.seed(random_seed)
176

177
178
179
    if numpy_random_seed is not None:
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
        np.random.seed(numpy_random_seed)
180

181
182
183
    if torch_random_seed is not None:
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
        torch.manual_seed(torch_random_seed)
184

185
186
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")
187

188
189
190
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

191
192
193
    if tasks is None:
        tasks = []
    if len(tasks) == 0:
194
195
196
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
197

198
199
200
    if gen_kwargs is not None:
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
201
        eval_logger.warning(
202
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
203
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
204
        )
205
206
        if not gen_kwargs:
            gen_kwargs = None
lintangsutawika's avatar
lintangsutawika committed
207

208
209
    if isinstance(model, str):
        if model_args is None:
210
            eval_logger.warning("model_args not specified. Using defaults.")
211
            model_args = ""
212

213
        if isinstance(model_args, dict):
214
            eval_logger.info(
215
                f"Initializing {model} model, with arguments: {model_args}"
216
            )
217
218
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
219
                {
220
221
222
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
223
224
225
226
                },
            )

        else:
227
            eval_logger.info(
228
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
229
            )
230
231
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
232
                {
233
234
235
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
236
237
                },
            )
238
    else:
239
        if not isinstance(model, lm_eval.api.model.LM):
240
            raise TypeError(
241
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
242
            )
243
        eval_logger.info("Using pre-initialized model")
244
        lm = model
245

246
247
    if use_cache is not None:
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
248
249
        lm = lm_eval.api.model.CachingLM(
            lm,
250
            use_cache
haileyschoelkopf's avatar
haileyschoelkopf committed
251
252
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
253
254
255
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
256
257
        )

258
    if task_manager is None:
259
260
261
262
263
264
265
266
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
267

Baber Abbasi's avatar
Baber Abbasi committed
268
    task_dict = get_task_dict(
269
        tasks,
Baber Abbasi's avatar
Baber Abbasi committed
270
271
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
272

Lintang Sutawika's avatar
Lintang Sutawika committed
273
274
275
276
277
278
279
280
281
282
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
283

284
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
285
                if task_obj.get_config("output_type") == "generate_until":
286
                    if gen_kwargs is not None:
Lintang Sutawika's avatar
Lintang Sutawika committed
287
                        task_obj.set_config(
288
                            key="generation_kwargs", value=gen_kwargs, update=True
Lintang Sutawika's avatar
Lintang Sutawika committed
289
                        )
Baber Abbasi's avatar
Baber Abbasi committed
290
291
292
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
293

294
                if predict_only:
Lintang Sutawika's avatar
Lintang Sutawika committed
295
296
297
298
299
300
301
302
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
303
                if num_fewshot is not None:
Lintang Sutawika's avatar
Lintang Sutawika committed
304
305
306
307
308
309
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
310
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
Lintang Sutawika's avatar
Lintang Sutawika committed
311
                        )
312
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
Lintang Sutawika's avatar
Lintang Sutawika committed
313
314
315
316
317
318
319
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
320
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)
Lintang Sutawika's avatar
Lintang Sutawika committed
321
322
323
324
325
326

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
327

328
329
    if check_integrity:
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
330

KonradSzafer's avatar
KonradSzafer committed
331
332
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
333
334
335
336
337
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
Baber Abbasi's avatar
Baber Abbasi committed
338
            else None,
339
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
340
341
        )

342
343
344
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
345
346
347
348
        limit=limit,
        samples=samples,
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
349
        bootstrap_iters=bootstrap_iters,
350
351
352
353
354
355
356
        write_out=write_out,
        log_samples=True if predict_only else log_samples,
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
        verbosity=verbosity,
        confirm_run_unsafe_code=confirm_run_unsafe_code,
357
    )
358

359
    if lm.rank == 0:
360
361
362
363
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
364
        else:
365
            model_name = type(model).__name__
366

367
368
        # add info about the model and few shot config
        results["config"] = {
369
            "model": model_name,
370
            "model_args": model_args,
371
        }
372
373
374
375
376
377
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
378
                "batch_size": batch_size,
379
380
381
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
382
383
384
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
385
                "bootstrap_iters": bootstrap_iters,
386
387
388
389
390
                "gen_kwargs": gen_kwargs,
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
391
392
            }
        )
393
        results["git_hash"] = get_git_commit_hash()
394
        results["date"] = start_date
395
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
396
        add_tokenizer_info(results, lm)  # additional info about tokenizer
397
398
399
        return results
    else:
        return None
400

Leo Gao's avatar
Leo Gao committed
401

402
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
403
def evaluate(
404
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
405
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
406
    limit: Optional[int] = None,
407
    samples: Optional[dict] = None,
408
409
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
410
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
411
412
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
413
    system_instruction: Optional[str] = None,
414
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
415
    fewshot_as_multiturn: bool = False,
416
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
417
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
418
):
419
420
421
422
423
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
424
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
425
426
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
427
428
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
429
430
431
432
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
433
    :param bootstrap_iters:
434
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
435
    :param write_out: bool
436
437
438
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
439
440
    :param system_instruction: str
        System instruction to be applied to the prompt
441
442
443
444
445
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
446
447
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
448
449
450
451
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
452
453
454
    :return
        Dictionary of results
    """
455

456
457
458
459
460
461
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
462
463
464
465
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
466
    # tracks all Instances/requests a model must generate output on.
467
    requests = defaultdict(list)
468
469
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
470
    padding_requests = defaultdict(int)
471

472
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
473
    eval_tasks = get_task_list(task_dict)
474
    if not log_samples:
475
        if not all(
476
477
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
478
479
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
480

Hojin Lee's avatar
Hojin Lee committed
481
482
483
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
484
    incompatible_tasks = []
485
486
    for task_output in eval_tasks:
        task: Task = task_output.task
487

488
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
489
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
490
491
492
493
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
494
495
496
497
498
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
499
    # end validation check
500

Chenjie Luo's avatar
Chenjie Luo committed
501
502
503
    # Cache the limit arg.
    limit_arg = limit
    limits = []
504
505
506
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
507
508
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
509
510
        task.build_all_requests(
            limit=limit,
511
512
513
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
514
515
516
517
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
518
            system_instruction=system_instruction,
519
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
520
            fewshot_as_multiturn=fewshot_as_multiturn,
521
522
523
524
525
526
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
527
        )
528
        eval_logger.debug(
529
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
530
531
        )
        if write_out:
532
            print_writeout(task)
533
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
534
535
536
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
537
538

        if lm.world_size > 1:
539
540
541
542
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
543
544
545
546
547
548
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
549
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
550
            numpad = max(gathered_item) - gathered_item[lm.rank]
551
552
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
553

554
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
555
556
    # execute each type of request
    for reqtype, reqs in requests.items():
557
        eval_logger.info(f"Running {reqtype} requests")
558
559
560
561
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
562

563
564
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
565
566
                cloned_reqs.extend([req] * req.repeats)

567
568
569
570
571
572
573
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

574
575
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
576

577
578
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
579
580
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
581
    for task_output, limit in zip(eval_tasks, limits):
582
        task = task_output.task
583
584
        task.apply_filters()

585
586
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
587
        # TODO: make it possible to use a different metric per filter
588
        # Pre-process task.instances to group by doc_id
589
        instances_by_doc_id = defaultdict(list)
590
591
592
593
594
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
595
        # iterate over different filters used
596
        for filter_key in task.instances[0].filtered_resps.keys():
597
598
599
600
601
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
602
            doc_iterator = task.doc_iterator(
603
604
605
606
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
607
            )
608
            for doc_id, doc in doc_iterator:
609
610
611
612
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
613
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
614
                metrics = task.process_results(
615
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
616
                )
617
618
619
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
620
                        "doc_id": doc_id_true,
621
622
623
624
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
625
626
627
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
628
629
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
630
631
632
633
634
635
636
637
638
639
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
640
641
                    }
                    example.update(metrics)
642
                    task_output.logged_samples.append(example)
643
                for metric, value in metrics.items():
644
                    task_output.sample_metrics[(metric, filter_key)].append(value)
645

646
647
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
648
        # first gather logged samples across all ranks
649
650
651
652
653
654
655
656
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
657
                )
658

659
660
661
662
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
663

664
665
666
667
668
669
670
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
671
                )
672
673
674
675
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
676

677
    if RANK == 0:
678
679
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
680
681
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
682
683
684
685
686
687
688
689
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
690

691
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
692
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
708
709
710
711
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
712

Lintang Sutawika's avatar
Lintang Sutawika committed
713
714
715
716
717
718
719
720
721
722
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
723

724
        results_dict = {
725
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
726
727
728
729
730
731
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
732
733
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
734
            "n-shot": dict(sorted(num_fewshot.items())),
735
            "higher_is_better": dict(sorted(higher_is_better.items())),
736
737
738
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
739
740
741
742
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
743
                }
Chenjie Luo's avatar
Chenjie Luo committed
744
                for task_output, limit in zip(eval_tasks, limits)
745
            },
746
        }
747
748
749
750
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
751

752
753
    else:
        return None