"official/legacy/xlnet/README.md" did not exist on "d03ce000060b42ce9b0210286ce8a859da11160a"
evaluator.py 31.1 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
29
from lm_eval.tasks import TaskManager, get_task_dict
30
31
32
33
from lm_eval.utils import (
    handle_non_serializable,
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
34
    setup_logging,
35
36
    simple_parse_args_string,
)
37

Fabrizio Milo's avatar
Fabrizio Milo committed
38

39
40
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
41
    from lm_eval.api.task import Task
42

Lintang Sutawika's avatar
Lintang Sutawika committed
43
44
eval_logger = logging.getLogger(__name__)

45

46
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
47
48
def simple_evaluate(
    model,
49
50
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
51
    num_fewshot: Optional[int] = None,
52
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
56
57
58
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
59
    limit: Optional[Union[int, float]] = None,
60
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
69
    gen_kwargs: Union[str, dict, None] = None,
70
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
71
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
77
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
78
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
):
80
    """Instantiate and evaluate a model on a list of tasks.
81

82
83
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
84
85
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
86
        Ignored if `model` argument is a LM object.
87
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
88
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
89
90
    :param num_fewshot: int
        Number of examples in few-shot context
91
    :param batch_size: int or str, optional
92
        Batch size for model
93
94
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
95
    :param device: str, optional
96
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
99
100
101
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
102
        Rewrites all the request cache if set to `True`. `None` if not desired.
103
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
104
        Deletes all the request cache if set to `True`. `None` if not desired.
105
106
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
107
108
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
109
    :param bootstrap_iters:
110
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
111
112
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
113
    :param write_out: bool
114
115
116
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
117
118
    :param system_instruction: str
        System instruction to be applied to the prompt
119
120
121
122
123
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
124
125
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
126
127
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
128
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
129
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
130
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
133
134
135
136
137
138
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
139
140
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
141
142
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
143

Baber Abbasi's avatar
Baber Abbasi committed
144
    return
145
        Dictionary of results
146
    """
Baber Abbasi's avatar
Baber Abbasi committed
147
148
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
149
    start_date = time.time()
150

151
152
153
154
155
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

Baber Abbasi's avatar
Baber Abbasi committed
156
157
158
159
160
161
162
    if isinstance(model_args, str) and (
        "instruct" in model_args and not apply_chat_template
    ):
        eval_logger.warning(
            "Instruct model detected, but chat template not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
        )

163
164
165
166
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

167
    seed_message = []
168
169
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
170
        seed_message.append(f"Setting random seed to {random_seed}")
171
172
173
        random.seed(random_seed)

    if numpy_random_seed is not None:
174
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
175
176
177
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
178
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
179
180
        torch.manual_seed(torch_random_seed)

181
182
183
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

184
185
186
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

187
188
    if tasks is None:
        tasks = []
189
190
191
192
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
193

lintangsutawika's avatar
lintangsutawika committed
194
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
195
196
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
197
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
198
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
199
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
200
        )
Baber Abbasi's avatar
Baber Abbasi committed
201
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
202
203
            gen_kwargs = None

204
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
205
        if model_args is None:
206
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
207
            model_args = ""
208

209
        if isinstance(model_args, dict):
210
211
212
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
213
214
215
216
217
218
219
220
221
222
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
223
224
225
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
226
227
228
229
230
231
232
233
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
234
    else:
235
        if not isinstance(model, lm_eval.api.model.LM):
236
237
238
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
239
        eval_logger.info("Using pre-initialized model")
240
        lm = model
241

haileyschoelkopf's avatar
haileyschoelkopf committed
242
    if use_cache is not None:
243
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
244
245
246
247
248
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
249
250
251
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
252
253
        )

254
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
255
256
257
258
259
260
261
262
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
263

Baber Abbasi's avatar
Baber Abbasi committed
264
265
266
267
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
268

Lintang Sutawika's avatar
Lintang Sutawika committed
269
270
271
272
273
274
275
276
277
278
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
279

280
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
281
282
283
284
285
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
286
287
288
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
323

Stephen Hogg's avatar
Stephen Hogg committed
324
    if check_integrity:
325
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
326

KonradSzafer's avatar
KonradSzafer committed
327
328
329
330
331
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
332
333
334
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
335
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
336
337
        )

338
339
340
341
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
342
        samples=samples,
343
344
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
345
        bootstrap_iters=bootstrap_iters,
346
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
347
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
348
349
350
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
351
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
352
        confirm_run_unsafe_code=confirm_run_unsafe_code,
353
    )
Baber Abbasi's avatar
Baber Abbasi committed
354
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
355
        setup_logging(verbosity=verbosity)
356

357
    if lm.rank == 0:
358
359
360
361
362
363
364
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

365
366
        # add info about the model and few shot config
        results["config"] = {
367
            "model": model_name,
368
369
            "model_args": model_args,
        }
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
385
386
387
388
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
389
390
            }
        )
391
        results["git_hash"] = get_git_commit_hash()
392
        results["date"] = start_date
393
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
394
        add_tokenizer_info(results, lm)  # additional info about tokenizer
395
396
397
        return results
    else:
        return None
398

Leo Gao's avatar
Leo Gao committed
399

400
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
401
def evaluate(
402
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
403
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
404
    limit: Optional[int] = None,
405
    samples: Optional[dict] = None,
406
407
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
408
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
409
410
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
411
    system_instruction: Optional[str] = None,
412
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
413
    fewshot_as_multiturn: bool = False,
414
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
415
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
416
):
417
418
419
420
421
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
422
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
423
424
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
425
426
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
427
428
429
430
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
431
    :param bootstrap_iters:
432
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
433
    :param write_out: bool
434
435
436
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
437
438
    :param system_instruction: str
        System instruction to be applied to the prompt
439
440
441
442
443
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
444
445
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
446
447
448
449
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
450
451
452
    :return
        Dictionary of results
    """
453

454
455
456
457
458
459
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
460
461
462
463
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
464
    # tracks all Instances/requests a model must generate output on.
465
    requests = defaultdict(list)
466
467
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
468
    padding_requests = defaultdict(int)
469

470
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
471
    eval_tasks = get_task_list(task_dict)
472
    if not log_samples:
473
        if not all(
474
475
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
476
477
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
478

Hojin Lee's avatar
Hojin Lee committed
479
480
481
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
482
    incompatible_tasks = []
483
484
    for task_output in eval_tasks:
        task: Task = task_output.task
485
486
487

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
488
489
490
491
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
492
493
494
495
496
497
498
499
500
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
501
    # end validation check
502

Chenjie Luo's avatar
Chenjie Luo committed
503
504
505
    # Cache the limit arg.
    limit_arg = limit
    limits = []
506
507
508
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
509
510
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
511
512
        task.build_all_requests(
            limit=limit,
513
514
515
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
516
517
518
519
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
520
            system_instruction=system_instruction,
521
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
522
            fewshot_as_multiturn=fewshot_as_multiturn,
523
524
525
526
527
528
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
529
        )
530
        eval_logger.debug(
531
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
532
533
        )
        if write_out:
534
            print_writeout(task)
535
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
536
537
538
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
539
540

        if lm.world_size > 1:
541
542
543
544
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
545
546
547
548
549
550
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
551
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
552
            numpad = max(gathered_item) - gathered_item[lm.rank]
553
554
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
555

556
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
557
558
    # execute each type of request
    for reqtype, reqs in requests.items():
559
        eval_logger.info(f"Running {reqtype} requests")
560
561
562
563
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
564

565
566
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
567
568
                cloned_reqs.extend([req] * req.repeats)

569
570
571
572
573
574
575
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

576
577
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
578

579
580
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
581
582
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
583
    for task_output, limit in zip(eval_tasks, limits):
584
        task = task_output.task
585
586
        task.apply_filters()

587
588
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
589
        # TODO: make it possible to use a different metric per filter
590
        # Pre-process task.instances to group by doc_id
591
        instances_by_doc_id = defaultdict(list)
592
593
594
595
596
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
597
        # iterate over different filters used
598
        for filter_key in task.instances[0].filtered_resps.keys():
599
600
601
602
603
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
604
            doc_iterator = task.doc_iterator(
605
606
607
608
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
609
            )
610
            for doc_id, doc in doc_iterator:
611
612
613
614
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
615
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
616
                metrics = task.process_results(
617
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
618
                )
619
620
621
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
622
                        "doc_id": doc_id_true,
623
624
625
626
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
627
628
629
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
630
631
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
632
633
634
635
636
637
638
639
640
641
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
642
643
                    }
                    example.update(metrics)
644
                    task_output.logged_samples.append(example)
645
                for metric, value in metrics.items():
646
                    task_output.sample_metrics[(metric, filter_key)].append(value)
647

648
649
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
650
        # first gather logged samples across all ranks
651
652
653
654
655
656
657
658
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
659
                )
660

661
662
663
664
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
665

666
667
668
669
670
671
672
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
673
                )
674
675
676
677
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
678

679
    if RANK == 0:
680
681
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
682
683
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
684
685
686
687
688
689
690
691
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
692

693
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
694
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
710
711
712
713
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
714

Lintang Sutawika's avatar
Lintang Sutawika committed
715
716
717
718
719
720
721
722
723
724
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
725

726
        results_dict = {
727
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
728
729
730
731
732
733
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
734
735
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
736
            "n-shot": dict(sorted(num_fewshot.items())),
737
            "higher_is_better": dict(sorted(higher_is_better.items())),
738
739
740
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
741
742
743
744
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
745
                }
Chenjie Luo's avatar
Chenjie Luo committed
746
                for task_output, limit in zip(eval_tasks, limits)
747
            },
748
        }
749
750
751
752
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
753

754
755
    else:
        return None
756
757
758
759


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
760
761
762
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
763
764
765
    }

    return request_caching_args