base.py 32.7 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
14
from accelerate import find_executable_batch_size
&'s avatar
& committed
15

16
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
17
from lm_eval import utils
18
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
19

Jason Phang's avatar
Jason Phang committed
20

Leo Gao's avatar
Leo Gao committed
21
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
22
23
24
    def __init__(self):
        self.cache_hook = CacheHook(None)

25
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
26
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
27
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
28
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
29
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
30

Leo Gao's avatar
Leo Gao committed
31
32
33
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
34
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
35
                empty context string.
Leo Gao's avatar
Leo Gao committed
36
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
39
40
41
42
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
43
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
44
            isgreedy:
Jason Phang's avatar
Jason Phang committed
45
46
47
48
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

49
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
50
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
51
52
53
54
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
88
89
90
        """
        pass

&'s avatar
& committed
91
    # TODO: Add an optional max length
92
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
93
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
100
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
101
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
102
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
107
        """
Leo Gao's avatar
Leo Gao committed
108
109
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
110
    @classmethod
111
112
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
113
114
115
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
116

Leo Gao's avatar
Leo Gao committed
117
118
119
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
120

121
class BaseLM(LM):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

147
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
148
149
150
    def tok_encode(self, string: str):
        pass

151
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
152
153
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
154

155
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
156
157
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
158

159
160
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
161
        """
162
163
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
164

165
        returns: a torch tensor of shape [batch, sequence, vocab] with the
166
        logits returned from the model
167
168
        """
        pass
169

Leo Gao's avatar
Leo Gao committed
170
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
190
191
192
193
194
195
196
197
198
        
        # automatic batch size detection for vectorization
        adaptive_batch_size = None
        if self.batch_size == 'auto': 
            # using rolling window with maximum context
            print('Passed argument batch_size = auto. Detecting largest batch size')
            @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
            def forward_batch(batch_size):
                test_batch = torch.ones((batch_size, self.max_length), device=self.device).long()
199
200
                for _ in range(5): 
                    out = F.log_softmax(self._model_call(test_batch), dim = -1).cpu()
201
202
203
204
205
                return batch_size
            
            batch_size = forward_batch() 
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
206
207

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
208
209
210
211
212
213
214
215
216
217
218
219
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
220
221
222

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

223
224
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
225
            string_nll = self._loglikelihood_tokens(
226
                rolling_token_windows, disable_tqdm=True, override_bs = adaptive_batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
227
228
            )

229
230
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
231

232
233
234
235
236
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

237
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs = None):
238
239
240
241
242
243
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
244
245
246
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
247
248
249
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
250
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
251

252
        
Fabrizio Milo's avatar
Fabrizio Milo committed
253
        re_ord = utils.Reorderer(requests, _collate)
254
255
256

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
257
258
259
260
        if len(re_ord.get_reordered()) > 0:
            _, context_enc, continuation_enc = re_ord.get_reordered()[0]
            max_context = len((context_enc + continuation_enc)[-(self.max_length + 1) :][:-1])
            if (self.batch_size == 'auto'):
261
                
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
                if override_bs is None:
                    print('Passed argument batch_size = auto. Detecting largest batch size')
                    @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
                    def forward_batch(batch_size):
                        test_batch = torch.ones((batch_size, max_context), device=self.device).long()
                        for _ in range(5):
                            out = F.log_softmax(self._model_call(test_batch), dim = -1).cpu()
                        return batch_size

                    batch_size = forward_batch()
                    print(f"Determined largest batch size: {batch_size}")
                    adaptive_batch_size = batch_size

                else:
                    adaptive_batch_size = override_bs
        else:
            adaptive_batch_size = 0 if override_bs is None else override_bs
279

Fabrizio Milo's avatar
Fabrizio Milo committed
280
        for chunk in utils.chunks(
281
            tqdm(re_ord.get_reordered(), disable=disable_tqdm), self.batch_size if self.batch_size != "auto" else adaptive_batch_size
Fabrizio Milo's avatar
Fabrizio Milo committed
282
        ):
283
            inps = []
284
            cont_toks_list = []
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
301
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
302
                # gpt2    \               \
303
304
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
305
306
307

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
308
309
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
310
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
311
                (inplen,) = inp.shape
312
313
314
315

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
316
317
318
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
319

320
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
321
322
323
324
325
326
327
328
329
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
330

331
332
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
333
334
                inplens.append(inplen)

335
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
336
337
338
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
339

Fabrizio Milo's avatar
Fabrizio Milo committed
340
341
342
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
343

344
345
                # Slice to original seq length
                contlen = len(cont_toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
346
347
348
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
349

350
                # Check if per-token argmax is exactly equal to continuation
351
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
352
353
354
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
355
356
                max_equal = (greedy_tokens == cont_toks).all()

357
358
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
359
360
361
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
362

363
                # Answer: (log prob, is-exact-match)
364
365
366
367
368
369
370
371
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
372
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
373

374
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
375
        # TODO: implement fully general `until` that handles until that are
376
        #       multiple tokens or that span multiple tokens correctly
377
378
379
380
381
382

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
383
            return len(toks), x[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
384

Fabrizio Milo's avatar
Fabrizio Milo committed
385
        re_ord = utils.Reorderer(requests, _collate)
386

387
388
        for context, request_args in tqdm(re_ord.get_reordered()):
            until = request_args['until']
389
390
            if isinstance(until, str):
                until = [until]
391

392
393
394
395
            if until:
                (primary_until,) = self.tok_encode(until[0])
            else:
                primary_until = None
396

Fabrizio Milo's avatar
Fabrizio Milo committed
397
398
399
            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
400

401
402
403
            max_gen_tokens = min(
                self.max_gen_toks, request_args.get('max_length', self.max_gen_toks)
            )
Fabrizio Milo's avatar
Fabrizio Milo committed
404
            cont = self._model_generate(
405
                context_enc, context_enc.shape[1] + max_gen_tokens, primary_until
Fabrizio Milo's avatar
Fabrizio Milo committed
406
407
408
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
409
410
411

            for term in until:
                s = s.split(term)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
412

413
414
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
Fabrizio Milo's avatar
Fabrizio Milo committed
415

416
            res.append(s)
Fabrizio Milo's avatar
Fabrizio Milo committed
417

Fabrizio Milo's avatar
Fabrizio Milo committed
418
        return re_ord.get_original(res)
Leo Gao's avatar
Leo Gao committed
419

Leo Gao's avatar
Leo Gao committed
420

421
class Task(abc.ABC):
&'s avatar
&amp; committed
422
423
424
425
426
427
428
429
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
430

Jon Tow's avatar
Jon Tow committed
431
432
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
433
434
435
436
437
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
462
        self._training_docs = None
463
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
464

Jon Tow's avatar
Jon Tow committed
465
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
466
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
467
468
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
489
490
491
492
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
493
494
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
495
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
496
        )
sdtblck's avatar
sdtblck committed
497

498
499
500
501
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

502
    @abstractmethod
503
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
504
        """Whether the task has a training set"""
505
        pass
506

507
    @abstractmethod
508
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
509
510
511
        """Whether the task has a validation set"""
        pass

512
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
513
514
    def has_test_docs(self):
        """Whether the task has a test set"""
515
516
        pass

Leo Gao's avatar
Leo Gao committed
517
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
518
519
520
521
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
522
        return []
523

Leo Gao's avatar
Leo Gao committed
524
    def validation_docs(self):
525
526
527
528
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
529
        return []
530

Leo Gao's avatar
Leo Gao committed
531
    def test_docs(self):
532
533
534
535
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
536
        return []
Leo Gao's avatar
Leo Gao committed
537

Jon Tow's avatar
Jon Tow committed
538
539
540
541
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
542
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
543
544
545
546
547
548

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

549
    def fewshot_examples(self, k, rnd):
550
551
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
552

Leo Gao's avatar
Leo Gao committed
553
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
554

555
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
556
557
558
559
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
560

561
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
562
563
564
    def doc_to_text(self, doc):
        pass

565
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
566
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
567
        pass
Leo Gao's avatar
Leo Gao committed
568

569
    @abstractmethod
570
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
571
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
572
573
        Requests which will be sent to the LM.

574
575
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
576
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
577
            The context string, generated by fewshot_context. This includes the natural
578
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
579
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
580
        """
Leo Gao's avatar
Leo Gao committed
581
        pass
582

583
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
584
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
585
586
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
587
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
588
589
590
591
592

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
593
        """
Leo Gao's avatar
Leo Gao committed
594
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
595

596
    @abstractmethod
597
598
    def aggregation(self):
        """
&'s avatar
&amp; committed
599
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
600
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
601
            functions that aggregate a list of metric scores
602
603
604
        """
        pass

605
    @abstractmethod
606
607
608
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
609
            A dictionary where keys are the names of submetrics and values are
610
611
612
613
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
614
    def fewshot_description(self):
615
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
616

617
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
618
            "`fewshot_description` will be removed in futures versions. Pass "
619
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
620
621
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
622
623
        return ""

624
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
625
626
627
628
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
629
630
631
632
633
634
635
636
637
638
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
639
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
640
641
642
643
644
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
645
646
647
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
648
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
649
            "The `provide_description` arg will be removed in future versions. To prepend "
650
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
651
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
652
        )
653
654
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
655
656
657
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
658

659
        description = description + "\n\n" if description else ""
660

661
662
        if num_fewshot == 0:
            labeled_examples = ""
663
        else:
664
665
666
667
668
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
669
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
670
671
672
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
673
                    )
674

675
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
676

677
678
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
679

Fabrizio Milo's avatar
Fabrizio Milo committed
680
681
682
683
684
685
686
687
688
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
689

690
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
691
692
693
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
694
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
695
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
696
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
697

Leo Gao's avatar
Leo Gao committed
698
699
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
700
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
701
702
703
704
705
706
707
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
708
        acc = 1.0 if np.argmax(results) == gold else 0.0
709
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
710
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
711
712

        return {
Leo Gao's avatar
Leo Gao committed
713
714
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
715
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
716

Leo Gao's avatar
Leo Gao committed
717
718
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
719
720
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
721
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
722

Leo Gao's avatar
Leo Gao committed
723
724
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
725
726
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
727
728
729
        }


Jason Phang's avatar
Jason Phang committed
730
class PerplexityTask(Task, abc.ABC):
731
732
733
734
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
735
736
737
738
739
740
741
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
742
743
744
745
746
747
748
749
750
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
751
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
752
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
753
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
754
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
755
        )
756
757
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
758
759
760
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
761

Jason Phang's avatar
Jason Phang committed
762
763
764
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
765
766
767
768
769
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
770

771
772
773
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
774
    def doc_to_text(self, doc):
775
        return ""
Jason Phang's avatar
Jason Phang committed
776
777

    def doc_to_target(self, doc):
778
        return doc
Jason Phang's avatar
Jason Phang committed
779
780
781

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
782
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
783
784
785
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
786
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
787
        words = self.count_words(doc)
788
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
789
        return {
Leo Gao's avatar
Leo Gao committed
790
            "word_perplexity": (loglikelihood, words),
791
            "byte_perplexity": (loglikelihood, bytes_),
792
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
793
794
795
796
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
797
798
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
799
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
800
801
        }

802
803
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
804
        return len(doc.encode("utf-8"))
805
806
807

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
808
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
809
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
810

Jason Phang's avatar
Jason Phang committed
811

Leo Gao's avatar
Leo Gao committed
812
813
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
814
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
815
816


Leo Gao's avatar
Leo Gao committed
817
818
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
819
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
820
821
822
823
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
824

Leo Gao's avatar
Leo Gao committed
825
826
827
828
829
830
831
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
832
833
class CachingLM:
    def __init__(self, lm, cache_db):
834
835
836
837
838
839
840
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
841
842
        self.lm = lm
        self.cache_db = cache_db
843
844
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
845
846
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
847
848
849
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
850
851
852
853
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
854

Leo Gao's avatar
Leo Gao committed
855
856
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
857
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
858
859
860
861
862
863
864
865
866
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
867

868
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
869
870
871
872
873
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
874
875
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
876
877
878
879

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
880
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
881
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
882
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
883
884

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
885

Leo Gao's avatar
Leo Gao committed
886
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
887

Leo Gao's avatar
Leo Gao committed
888
889
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
890

Jason Phang's avatar
Jason Phang committed
891

892
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
893
894
895
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
896
897
898
}


899
class Request:
Leo Gao's avatar
Leo Gao committed
900
901
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
902
903
904
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
905

Leo Gao's avatar
Leo Gao committed
906
        self.request_type = request_type
907
908
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
909

910
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
911
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
912
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
913
914
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
915

916
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
917
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
918
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
919
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
920

Leo Gao's avatar
Leo Gao committed
921
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
922
923
924
925
926
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
927

Leo Gao's avatar
Leo Gao committed
928
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
929
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
930

Jason Phang's avatar
Jason Phang committed
931

Leo Gao's avatar
Leo Gao committed
932
933
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
934
935
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
936

Leo Gao's avatar
Leo Gao committed
937
938
939
940
        return fn


rf = RequestFactory()