glue.py 12.6 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
&'s avatar
& committed
2
3
from lm_eval.base import rf
from ..metrics import mean, matthews_corrcoef, f1_score
Jason Phang's avatar
Jason Phang committed
4
5
from scipy.stats import pearsonr, spearmanr
from tqdm import auto as tqdm_lib
Jonathan Tow's avatar
Jonathan Tow committed
6
from . common import HFTask, yesno
Leo Gao's avatar
Leo Gao committed
7
from ..utils import general_detokenize
Jonathan Tow's avatar
Jonathan Tow committed
8
9

# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
10
11


sdtblck's avatar
sdtblck committed
12
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
13
14
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
15

Jason Phang's avatar
checkin  
Jason Phang committed
16
17
18
19
20
21
22
23
24
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
25
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
26
27
        # TODO
        return ""
Jason Phang's avatar
Jason Phang committed
28

29
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
30
        return "{}\nQuestion: Does this sentence make sense?\nAnswer:".format(doc["sentence"])
31
32

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
33
        return " {}".format({1: "yes", 0: "no"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
34

Jonathan Tow's avatar
Jonathan Tow committed
35
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
36
37
        ll_true, _ = rf.loglikelihood(ctx, " yes")
        ll_false, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
38
        return ll_true, ll_false
39

Jonathan Tow's avatar
Jonathan Tow committed
40
41
42
43
44
45
46
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_true > ll_false
        gold = doc["label"]
        return {
            "mcc": (gold, pred)
        }
47

Jonathan Tow's avatar
Jonathan Tow committed
48
    def higher_is_better(self):
Jason Phang's avatar
checkin  
Jason Phang committed
49
        return {
Jonathan Tow's avatar
Jonathan Tow committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
            "mcc": True
        }

    def aggregation(self):
        return {
            "mcc": matthews_corrcoef
        }


class SST(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Leo Gao's avatar
Fix  
Leo Gao committed
73
        return "Indicate if the sentiment of each sentence is positive or negative."
Jonathan Tow's avatar
Jonathan Tow committed
74
75

    def doc_to_text(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
76
        return "{}\nQuestion: Is this sentence positive or negative?\nAnswer:".format(
Leo Gao's avatar
Leo Gao committed
77
            general_detokenize(doc["sentence"]),
Jonathan Tow's avatar
Jonathan Tow committed
78
79
80
        )

    def doc_to_target(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
81
        return " {}".format({1: "positive", 0: "negative"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
82
83

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
84
85
        ll_positive, _ = rf.loglikelihood(ctx, " positive")
        ll_negative, _ = rf.loglikelihood(ctx, " negative")
Jonathan Tow's avatar
Jonathan Tow committed
86
87
88
89
90
91
92
93
94
95
96
97
98
        return ll_positive, ll_negative

    def process_results(self, doc, results):
        ll_positive, ll_negative = results
        pred = ll_positive > ll_negative
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
Jason Phang's avatar
checkin  
Jason Phang committed
99
100
        }

Jonathan Tow's avatar
Jonathan Tow committed
101
102
103
104
105
106
107
108
    def aggregation(self):
        return {
            "acc": mean
        }


# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
109

sdtblck's avatar
sdtblck committed
110
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
111
112
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
113

Jason Phang's avatar
checkin  
Jason Phang committed
114
115
116
117
118
119
120
121
122
123
124
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
125
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
126
127
128

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
129
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
130

131
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
132
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
133
            doc["premise"],
Leo Gao's avatar
Fix  
Leo Gao committed
134
            doc["hypothesis"].strip() + ('' if doc["hypothesis"].strip().endswith('.') else '.'),
Jason Phang's avatar
checkin  
Jason Phang committed
135
        )
136
137
138
139
140
141

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
142

Jonathan Tow's avatar
Jonathan Tow committed
143
144
145
146
147
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false
148

Jonathan Tow's avatar
Jonathan Tow committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
checkin  
Jason Phang committed
165
166


Jason Phang's avatar
Jason Phang committed
167
168
169
170
171
172
173
174
175
176
177
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


Jonathan Tow's avatar
Jonathan Tow committed
178
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
179
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
180
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
181
182
183
184
185
186
187
188
189
190

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
191
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
192
        return "{}\n{}\nQuestion: Does this response answer the question?\nAnswer:".format(
Jonathan Tow's avatar
Jonathan Tow committed
193
194
195
196
197
198
199
            doc["question"],
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = not entailment
Leo Gao's avatar
Fix  
Leo Gao committed
200
        return " {}".format({0: "yes", 1: "no"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
201
202

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
203
204
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        pred = ll_no > ll_yes
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }


class WNLI(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True
Jason Phang's avatar
Jason Phang committed
238

239
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
240
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
241
242
243
            doc["sentence1"],
            doc["sentence2"],
        )
244
245

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
246
247
248
249
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
250

Jonathan Tow's avatar
Jonathan Tow committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
273

Jason Phang's avatar
Jason Phang committed
274

sdtblck's avatar
sdtblck committed
275
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
276
277
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
278
279
280
281
282
283
284
285
286
287

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

288
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
289
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
checkin  
Jason Phang committed
290
291
292
            doc["sentence1"],
            doc["sentence2"],
        )
293
294
295
296
297

    def doc_to_target(self, doc):
        # 0 = entailment
        # 1 = not_entailment
        return " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
298

Jonathan Tow's avatar
Jonathan Tow committed
299
300
301
302
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
303

Jonathan Tow's avatar
Jonathan Tow committed
304
305
306
307
308
309
310
311
312
313
314
315
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_false > ll_true
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }
Jason Phang's avatar
Jason Phang committed
316

Jonathan Tow's avatar
Jonathan Tow committed
317
318
319
320
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
321

Jonathan Tow's avatar
Jonathan Tow committed
322
323
324
325
326

# Similarity and Paraphrase Tasks


class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
327
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
328
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
329
330
331
332
333
334
335
336

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
337
        return False
Jason Phang's avatar
Jason Phang committed
338

Jonathan Tow's avatar
Jonathan Tow committed
339
340
341
    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

342
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
343
344
345
        return "Sentence 1: {}\nSentence 2: {}\nQuestion: Do both sentences mean the same thing?\nAnswer:".format(
            general_detokenize(doc["sentence1"]),
            general_detokenize(doc["sentence2"]),
Jason Phang's avatar
Jason Phang committed
346
        )
347
348

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
349
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
350

Jonathan Tow's avatar
Jonathan Tow committed
351
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
352
353
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
354
        return ll_yes, ll_no
355

Jonathan Tow's avatar
Jonathan Tow committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
376
377


sdtblck's avatar
sdtblck committed
378
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
379
380
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
381
382
383
384
385
386
387
388

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
389
        return False
Jason Phang's avatar
Jason Phang committed
390
391

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
392
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
393

394
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
395
        return "Question 1: {}\nQuestion 2: {}\nQuestion: Do both questions ask the same thing?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
396
397
398
            doc["question1"],
            doc["question2"],
        )
399
400
401

    def doc_to_target(self, doc):
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
402

Jonathan Tow's avatar
Jonathan Tow committed
403
404
405
406
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
407

Jonathan Tow's avatar
Jonathan Tow committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
428
429


sdtblck's avatar
sdtblck committed
430
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
431
432
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

447
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
448
        return "sentence 1: {}\nsentence 2: {}\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
449
450
451
            doc["sentence1"],
            doc["sentence2"],
        )
452
453
454

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
455

Leo Gao's avatar
Leo Gao committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')