glue.py 11.9 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jason Phang's avatar
Jason Phang committed
2
from scipy.stats import pearsonr, spearmanr
Jason Phang's avatar
checkin  
Jason Phang committed
3
from sklearn.metrics import f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
4
5
from tqdm import auto as tqdm_lib
from . common import NLP_TASK, simple_accuracy_metric, yesno
Jason Phang's avatar
checkin  
Jason Phang committed
6
7


Jason Phang's avatar
Jason Phang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def get_accuracy_and_f1(preds, golds):
    golds = np.array(golds)
    preds = np.array(preds)
    acc = float((preds == golds).mean())
    f1 = float(f1_score(y_true=golds, y_pred=preds))
    minor = {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }
    return {
        "major": minor["acc_and_f1"],
        "minor": minor,
        "higher_is_better": True,
    }


Jason Phang's avatar
checkin  
Jason Phang committed
25
class CoLA(NLP_TASK):
Jason Phang's avatar
Jason Phang committed
26
27
28
    NLP_PATH = "glue"
    NLP_NAME = "cola"

Jason Phang's avatar
checkin  
Jason Phang committed
29
30
31
32
33
34
35
36
37
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
38
39
40
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

Jason Phang's avatar
checkin  
Jason Phang committed
41
    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
42
        text = "Sentence: {}\nAnswer:".format(doc["sentence"])
Jason Phang's avatar
checkin  
Jason Phang committed
43
44
45
46
        if include_target:
            text += " {}".format({1: "True", 0: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
47
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
48
49
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
50
51
52
53
54
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
55
            )
Jason Phang's avatar
Jason Phang committed
56
            preds.append(lm.loglikelihood(ctx, ' True') > lm.loglikelihood(ctx, ' False'))
Jason Phang's avatar
checkin  
Jason Phang committed
57
58
59
60
61
62
63
64
65
66
67
        golds = np.array(golds)
        preds = np.array(preds)
        mcc = float(matthews_corrcoef(y_true=golds, y_pred=preds))
        return {
            "major": mcc,
            "minor": {"mcc": mcc},
            "higher_is_better": True,
        }


class MNLI(NLP_TASK):
Jason Phang's avatar
Jason Phang committed
68
69
70
    NLP_PATH = "glue"
    NLP_NAME = "mnli"

Jason Phang's avatar
checkin  
Jason Phang committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
            return self._load_nlp_dataset()["validation_matched"]

    def test_docs(self):
        if self.has_test_docs():
            return self._load_nlp_dataset()["test_matched"]

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
90
91
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
92
93
94
95
96
97
98
99
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
100
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
101
102
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
103
104
105
106
107
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
108
            )
Jason Phang's avatar
Jason Phang committed
109
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
110
111
112
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
113
114
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
115
116
117
        return simple_accuracy_metric(preds=preds, golds=golds)


Jason Phang's avatar
Jason Phang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class MRPC(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "mrpc"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
152
            preds.append(lm.loglikelihood(ctx, 'yes') > lm.loglikelihood(ctx, 'no'))
Jason Phang's avatar
Jason Phang committed
153
154
155
        return get_accuracy_and_f1(preds=preds, golds=golds)


Jason Phang's avatar
checkin  
Jason Phang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class RTE(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "rte"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
seed  
Jason Phang committed
175
176
            # 0 = entailment
            # 1 = not_entailment
Jason Phang's avatar
Jason Phang committed
177
            text += " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
178
179
        return text

Jason Phang's avatar
Jason Phang committed
180
181
182
183
184
185
186
187
188
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
189
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        return simple_accuracy_metric(preds=preds, golds=golds)


class QNLI(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "qnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
207
        text = "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
Jason Phang's avatar
Jason Phang committed
208
209
210
211
212
213
            doc["question"],
            doc["sentence"],
        )
        if include_target:
            # True = entailment
            # False = not entailment
Jason Phang's avatar
Jason Phang committed
214
            text += " {}".format({0: "Yes", 1: "No"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
215
216
217
218
219
220
221
222
223
224
225
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
226
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        return simple_accuracy_metric(preds=preds, golds=golds)


class QQP(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "qqp"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
244
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    def doc_to_text(self, doc, include_target=True):
        text = "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
            doc["question1"],
            doc["question2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return get_accuracy_and_f1(preds=preds, golds=golds)


class STSB(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "stsb"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
Jason Phang committed
291
            text += " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
292
293
294
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
295
296
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
297
298
299
300
301
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
302
            )
Jason Phang's avatar
Jason Phang committed
303
304
305
306
            output = lm.generate(context=ctx, max_gen_length=5).strip()
            first_element = output.split()[0]
            if first_element.isnumeric():
                pred = max(min(float(first_element), 5.0), 0.0)
Jason Phang's avatar
checkin  
Jason Phang committed
307
            else:
Jason Phang's avatar
Jason Phang committed
308
                pred = 2.5
Jason Phang's avatar
Jason Phang committed
309
            import pdb; pdb.set_trace()
Jason Phang's avatar
Jason Phang committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            preds.append(pred)
        pearson_corr = float(pearsonr(preds, golds)[0])
        spearman_corr = float(spearmanr(preds, golds)[0])
        minor = {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        }
        return {
            "major": minor["corr"],
            "minor": minor,
            "higher_is_better": True,
        }


class SST(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )
        if include_target:
            text += " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' Positive') > lm.loglikelihood(ctx, ' Negative'))
        return simple_accuracy_metric(preds=preds, golds=golds)


class WNLI(NLP_TASK):
    NLP_PATH = "glue"
    NLP_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
377
378
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
397
398
399
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
400
401
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
402
        return simple_accuracy_metric(preds=preds, golds=golds)