glue.py 11.8 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jason Phang's avatar
Jason Phang committed
2
from scipy.stats import pearsonr, spearmanr
Jason Phang's avatar
checkin  
Jason Phang committed
3
from sklearn.metrics import f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
4
from tqdm import auto as tqdm_lib
sdtblck's avatar
sdtblck committed
5
from . common import HF_Dataset, simple_accuracy_metric, yesno
Jason Phang's avatar
checkin  
Jason Phang committed
6
7


Jason Phang's avatar
Jason Phang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def get_accuracy_and_f1(preds, golds):
    golds = np.array(golds)
    preds = np.array(preds)
    acc = float((preds == golds).mean())
    f1 = float(f1_score(y_true=golds, y_pred=preds))
    minor = {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }
    return {
        "major": minor["acc_and_f1"],
        "minor": minor,
        "higher_is_better": True,
    }


sdtblck's avatar
sdtblck committed
25
26
27
class CoLA(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jason Phang's avatar
checkin  
Jason Phang committed
28

Jason Phang's avatar
Jason Phang committed
29
30
31
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

Jason Phang's avatar
checkin  
Jason Phang committed
32
    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
33
        text = "Sentence: {}\nAnswer:".format(doc["sentence"])
Jason Phang's avatar
checkin  
Jason Phang committed
34
35
36
37
        if include_target:
            text += " {}".format({1: "True", 0: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
38
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
39
40
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
41
42
43
44
45
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
46
            )
Jason Phang's avatar
Jason Phang committed
47
            preds.append(lm.loglikelihood(ctx, ' True') > lm.loglikelihood(ctx, ' False'))
Jason Phang's avatar
checkin  
Jason Phang committed
48
49
50
51
52
53
54
55
56
57
        golds = np.array(golds)
        preds = np.array(preds)
        mcc = float(matthews_corrcoef(y_true=golds, y_pred=preds))
        return {
            "major": mcc,
            "minor": {"mcc": mcc},
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
58
59
60
class MNLI(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
61

Jason Phang's avatar
checkin  
Jason Phang committed
62
63
64
65
66
67
68
69
70
71
72
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
73
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
74
75
76

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
77
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
78
79
80

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
81
82
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
83
84
85
86
87
88
89
90
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
91
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
92
93
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
94
95
96
97
98
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
99
            )
Jason Phang's avatar
Jason Phang committed
100
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
101
102
103
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
104
105
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
106
107
108
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
109
110
111
class MRPC(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
143
            preds.append(lm.loglikelihood(ctx, 'yes') > lm.loglikelihood(ctx, 'no'))
Jason Phang's avatar
Jason Phang committed
144
145
146
        return get_accuracy_and_f1(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
147
148
149
class RTE(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
seed  
Jason Phang committed
166
167
            # 0 = entailment
            # 1 = not_entailment
Jason Phang's avatar
Jason Phang committed
168
            text += " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
169
170
        return text

Jason Phang's avatar
Jason Phang committed
171
172
173
174
175
176
177
178
179
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
180
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
181
182
183
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
184
185
186
class QNLI(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
187
188
189
190
191
192
193
194
195
196
197

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
198
        text = "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
Jason Phang's avatar
Jason Phang committed
199
200
201
202
203
204
            doc["question"],
            doc["sentence"],
        )
        if include_target:
            # True = entailment
            # False = not entailment
Jason Phang's avatar
Jason Phang committed
205
            text += " {}".format({0: "Yes", 1: "No"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
206
207
208
209
210
211
212
213
214
215
216
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
217
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
218
219
220
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
221
222
223
class QQP(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
224
225
226
227
228
229
230
231
232
233
234

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
235
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

    def doc_to_text(self, doc, include_target=True):
        text = "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
            doc["question1"],
            doc["question2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return get_accuracy_and_f1(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
259
260
261
class STSB(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
Jason Phang committed
282
            text += " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
283
284
285
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
286
287
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
288
289
290
291
292
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
293
            )
Jason Phang's avatar
Jason Phang committed
294
295
296
297
            output = lm.generate(context=ctx, max_gen_length=5).strip()
            first_element = output.split()[0]
            if first_element.isnumeric():
                pred = max(min(float(first_element), 5.0), 0.0)
Jason Phang's avatar
checkin  
Jason Phang committed
298
            else:
Jason Phang's avatar
Jason Phang committed
299
                pred = 2.5
Jason Phang's avatar
Jason Phang committed
300
            import pdb; pdb.set_trace()
Jason Phang's avatar
Jason Phang committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
            preds.append(pred)
        pearson_corr = float(pearsonr(preds, golds)[0])
        spearman_corr = float(spearmanr(preds, golds)[0])
        minor = {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        }
        return {
            "major": minor["corr"],
            "minor": minor,
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
316
317
318
class SST(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"
Jason Phang's avatar
Jason Phang committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )
        if include_target:
            text += " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' Positive') > lm.loglikelihood(ctx, ' Negative'))
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
353
354
355
class WNLI(HF_Dataset):
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"
Jason Phang's avatar
Jason Phang committed
356
357
358
359
360
361
362
363
364
365
366
367

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
368
369
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
388
389
390
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
391
392
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
393
        return simple_accuracy_metric(preds=preds, golds=golds)