glue.py 12.6 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
2
from lm_eval.base import rf, mean, f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
3
4
from scipy.stats import pearsonr, spearmanr
from tqdm import auto as tqdm_lib
Jonathan Tow's avatar
Jonathan Tow committed
5
from . common import HFTask, yesno
Leo Gao's avatar
Leo Gao committed
6
from ..utils import general_detokenize
Jonathan Tow's avatar
Jonathan Tow committed
7
8

# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
9
10


sdtblck's avatar
sdtblck committed
11
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
12
13
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
14

Jason Phang's avatar
checkin  
Jason Phang committed
15
16
17
18
19
20
21
22
23
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
24
    def fewshot_description(self):
Leo Gao's avatar
Leo Gao committed
25
26
        # TODO
        return ""
Jason Phang's avatar
Jason Phang committed
27

28
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
29
        return "{}\nQuestion: Does this sentence make sense?\nAnswer:".format(doc["sentence"])
30
31

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
32
        return " {}".format({1: "yes", 0: "no"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
33

Jonathan Tow's avatar
Jonathan Tow committed
34
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
35
36
        ll_true, _ = rf.loglikelihood(ctx, " yes")
        ll_false, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
37
        return ll_true, ll_false
38

Jonathan Tow's avatar
Jonathan Tow committed
39
40
41
42
43
44
45
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_true > ll_false
        gold = doc["label"]
        return {
            "mcc": (gold, pred)
        }
46

Jonathan Tow's avatar
Jonathan Tow committed
47
    def higher_is_better(self):
Jason Phang's avatar
checkin  
Jason Phang committed
48
        return {
Jonathan Tow's avatar
Jonathan Tow committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
            "mcc": True
        }

    def aggregation(self):
        return {
            "mcc": matthews_corrcoef
        }


class SST(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Leo Gao's avatar
Fix  
Leo Gao committed
72
        return "Indicate if the sentiment of each sentence is positive or negative."
Jonathan Tow's avatar
Jonathan Tow committed
73
74

    def doc_to_text(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
75
        return "{}\nQuestion: Is this sentence positive or negative?\nAnswer:".format(
Leo Gao's avatar
Leo Gao committed
76
            general_detokenize(doc["sentence"]),
Jonathan Tow's avatar
Jonathan Tow committed
77
78
79
        )

    def doc_to_target(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
80
        return " {}".format({1: "positive", 0: "negative"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
81
82

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
83
84
        ll_positive, _ = rf.loglikelihood(ctx, " positive")
        ll_negative, _ = rf.loglikelihood(ctx, " negative")
Jonathan Tow's avatar
Jonathan Tow committed
85
86
87
88
89
90
91
92
93
94
95
96
97
        return ll_positive, ll_negative

    def process_results(self, doc, results):
        ll_positive, ll_negative = results
        pred = ll_positive > ll_negative
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
Jason Phang's avatar
checkin  
Jason Phang committed
98
99
        }

Jonathan Tow's avatar
Jonathan Tow committed
100
101
102
103
104
105
106
107
    def aggregation(self):
        return {
            "acc": mean
        }


# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
108

sdtblck's avatar
sdtblck committed
109
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
110
111
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
112

Jason Phang's avatar
checkin  
Jason Phang committed
113
114
115
116
117
118
119
120
121
122
123
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
124
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
125
126
127

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
128
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
129

130
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
131
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
132
            doc["premise"],
Leo Gao's avatar
Fix  
Leo Gao committed
133
            doc["hypothesis"].strip() + ('' if doc["hypothesis"].strip().endswith('.') else '.'),
Jason Phang's avatar
checkin  
Jason Phang committed
134
        )
135
136
137
138
139
140

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
141

Jonathan Tow's avatar
Jonathan Tow committed
142
143
144
145
146
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false
147

Jonathan Tow's avatar
Jonathan Tow committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
checkin  
Jason Phang committed
164
165


Jason Phang's avatar
Jason Phang committed
166
167
168
169
170
171
172
173
174
175
176
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


Jonathan Tow's avatar
Jonathan Tow committed
177
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
178
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
179
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
180
181
182
183
184
185
186
187
188
189

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
190
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
191
        return "{}\n{}\nQuestion: Does this response answer the question?\nAnswer:".format(
Jonathan Tow's avatar
Jonathan Tow committed
192
193
194
195
196
197
198
            doc["question"],
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = not entailment
Leo Gao's avatar
Fix  
Leo Gao committed
199
        return " {}".format({0: "yes", 1: "no"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
200
201

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
202
203
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        pred = ll_no > ll_yes
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }


class WNLI(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True
Jason Phang's avatar
Jason Phang committed
237

238
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
239
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
240
241
242
            doc["sentence1"],
            doc["sentence2"],
        )
243
244

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
245
246
247
248
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
249

Jonathan Tow's avatar
Jonathan Tow committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
272

Jason Phang's avatar
Jason Phang committed
273

sdtblck's avatar
sdtblck committed
274
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
275
276
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
277
278
279
280
281
282
283
284
285
286

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

287
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
288
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
checkin  
Jason Phang committed
289
290
291
            doc["sentence1"],
            doc["sentence2"],
        )
292
293
294
295
296

    def doc_to_target(self, doc):
        # 0 = entailment
        # 1 = not_entailment
        return " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
297

Jonathan Tow's avatar
Jonathan Tow committed
298
299
300
301
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
302

Jonathan Tow's avatar
Jonathan Tow committed
303
304
305
306
307
308
309
310
311
312
313
314
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_false > ll_true
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }
Jason Phang's avatar
Jason Phang committed
315

Jonathan Tow's avatar
Jonathan Tow committed
316
317
318
319
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
320

Jonathan Tow's avatar
Jonathan Tow committed
321
322
323
324
325

# Similarity and Paraphrase Tasks


class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
326
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
327
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
328
329
330
331
332
333
334
335
336
337

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
338
339
340
    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

341
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
342
343
344
        return "Sentence 1: {}\nSentence 2: {}\nQuestion: Do both sentences mean the same thing?\nAnswer:".format(
            general_detokenize(doc["sentence1"]),
            general_detokenize(doc["sentence2"]),
Jason Phang's avatar
Jason Phang committed
345
        )
346
347

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
348
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
349

Jonathan Tow's avatar
Jonathan Tow committed
350
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
351
352
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
353
        return ll_yes, ll_no
354

Jonathan Tow's avatar
Jonathan Tow committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
375
376


sdtblck's avatar
sdtblck committed
377
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
378
379
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
380
381
382
383
384
385
386
387
388
389
390

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
391
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
392

393
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
394
        return "Question 1: {}\nQuestion 2: {}\nQuestion: Do both questions ask the same thing?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
395
396
397
            doc["question1"],
            doc["question2"],
        )
398
399
400

    def doc_to_target(self, doc):
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
401

Jonathan Tow's avatar
Jonathan Tow committed
402
403
404
405
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
406

Jonathan Tow's avatar
Jonathan Tow committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
427
428


sdtblck's avatar
sdtblck committed
429
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
430
431
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

446
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
447
        return "sentence 1: {}\nsentence 2: {}\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
448
449
450
            doc["sentence1"],
            doc["sentence2"],
        )
451
452
453

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
454

Leo Gao's avatar
Leo Gao committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')