evaluator.py 29.1 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import logging
Baber Abbasi's avatar
Baber Abbasi committed
3
import random
4
import time
5
6
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
7

8
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
9
import torch
lintangsutawika's avatar
lintangsutawika committed
10

lintangsutawika's avatar
lintangsutawika committed
11
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
13
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
14
import lm_eval.models
15
from lm_eval.caching.cache import delete_cache
16
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
17
    consolidate_group_results,
18
19
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
20
    get_subtask_list,
21
22
23
24
25
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
26
from lm_eval.loggers import EvaluationTracker
27
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
28
from lm_eval.tasks import TaskManager, get_task_dict
29
30
from lm_eval.utils import (
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
31
    setup_logging,
32
33
    simple_parse_args_string,
)
34

Fabrizio Milo's avatar
Fabrizio Milo committed
35

36
37
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Baber's avatar
TODO!  
Baber committed
38
    from lm_eval.api.task import ConfigurableTask, Task
39

Lintang Sutawika's avatar
Lintang Sutawika committed
40
41
eval_logger = logging.getLogger(__name__)

42

43
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
44
45
def simple_evaluate(
    model,
46
47
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
48
    num_fewshot: Optional[int] = None,
49
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
50
51
52
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
53
54
55
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
56
    limit: Optional[Union[int, float]] = None,
57
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
58
59
60
61
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
62
63
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
64
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
65
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
66
    gen_kwargs: Union[str, dict, None] = None,
67
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
68
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
69
    predict_only: bool = False,
70
71
72
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
73
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
74
    confirm_run_unsafe_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
75
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
76
):
77
    """Instantiate and evaluate a model on a list of tasks.
78

79
80
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
81
82
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
83
        Ignored if `model` argument is a LM object.
84
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
85
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
86
87
    :param num_fewshot: int
        Number of examples in few-shot context
88
    :param batch_size: int or str, optional
89
        Batch size for model
90
91
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
92
    :param device: str, optional
93
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
94
95
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
96
97
98
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
99
        Rewrites all the request cache if set to `True`. `None` if not desired.
100
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
101
        Deletes all the request cache if set to `True`. `None` if not desired.
102
103
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
104
105
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
106
    :param bootstrap_iters:
107
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
108
109
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
110
    :param write_out: bool
111
112
113
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
114
115
    :param system_instruction: str
        System instruction to be applied to the prompt
116
117
118
119
120
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
121
122
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
123
124
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
125
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
126
    :param verbosity: str
Lintang Sutawika's avatar
Lintang Sutawika committed
127
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
128
129
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
130
131
132
133
134
135
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
136
137
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
138
139
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
140

Baber Abbasi's avatar
Baber Abbasi committed
141
    return
142
        Dictionary of results
143
    """
Baber Abbasi's avatar
Baber Abbasi committed
144
145
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
146
    start_date = time.time()
147

148
149
150
151
152
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

153
154
155
156
157
158
159
    if (
        (isinstance(model_args, str) and "inst" in model_args.lower())
        or (
            isinstance(model_args, dict)
            and any("inst" in str(v).lower() for v in model_args.values())
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
160
        eval_logger.warning(
161
            "Model appears to be an instruct variant but chat template is not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
Baber Abbasi's avatar
Baber Abbasi committed
162
163
        )

164
165
166
167
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

168
    seed_message = []
169
170
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
171
        seed_message.append(f"Setting random seed to {random_seed}")
172
173
174
        random.seed(random_seed)

    if numpy_random_seed is not None:
175
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
176
177
178
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
179
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
180
181
        torch.manual_seed(torch_random_seed)

182
183
184
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

185
186
187
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

188
189
    if tasks is None:
        tasks = []
190
191
192
193
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
194

lintangsutawika's avatar
lintangsutawika committed
195
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
196
197
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
198
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
199
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
200
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
201
        )
Baber Abbasi's avatar
Baber Abbasi committed
202
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
203
204
            gen_kwargs = None

205
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
206
        if model_args is None:
207
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
208
            model_args = ""
209

210
        if isinstance(model_args, dict):
211
212
213
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
214
215
216
217
218
219
220
221
222
223
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
224
225
226
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
227
228
229
230
231
232
233
234
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
235
    else:
236
        if not isinstance(model, lm_eval.api.model.LM):
237
238
239
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
240
        eval_logger.info("Using pre-initialized model")
241
        lm = model
242

haileyschoelkopf's avatar
haileyschoelkopf committed
243
    if use_cache is not None:
244
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
245
246
247
248
249
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
250
251
252
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
253
254
        )

255
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
256
257
258
259
260
261
262
263
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
264

Baber Abbasi's avatar
Baber Abbasi committed
265
266
267
268
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
269

Lintang Sutawika's avatar
Lintang Sutawika committed
270
271
272
273
274
275
276
277
278
279
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
280

281
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
282
283
284
285
286
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
287
288
289
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
324

Stephen Hogg's avatar
Stephen Hogg committed
325
    if check_integrity:
326
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
327

KonradSzafer's avatar
KonradSzafer committed
328
329
330
331
332
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
333
334
335
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
336
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
337
338
        )

339
340
341
342
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
343
        samples=samples,
344
345
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
346
        bootstrap_iters=bootstrap_iters,
347
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
348
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
349
350
351
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
352
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
353
        confirm_run_unsafe_code=confirm_run_unsafe_code,
354
    )
Baber Abbasi's avatar
Baber Abbasi committed
355
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
356
        setup_logging(verbosity=verbosity)
357

358
    if lm.rank == 0:
359
360
361
362
363
364
365
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

366
367
        # add info about the model and few shot config
        results["config"] = {
368
            "model": model_name,
369
370
            "model_args": model_args,
        }
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
386
387
388
389
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
390
391
            }
        )
392
        results["git_hash"] = get_git_commit_hash()
393
        results["date"] = start_date
394
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
395
        add_tokenizer_info(results, lm)  # additional info about tokenizer
396
397
398
        return results
    else:
        return None
399

Leo Gao's avatar
Leo Gao committed
400

401
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
402
def evaluate(
403
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
404
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
405
    limit: Optional[int] = None,
406
    samples: Optional[dict] = None,
407
408
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
409
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
410
411
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
412
    system_instruction: Optional[str] = None,
413
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
414
    fewshot_as_multiturn: bool = False,
415
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
416
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
417
):
418
419
420
421
422
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
423
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
424
425
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
426
427
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
428
429
430
431
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
432
    :param bootstrap_iters:
433
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
434
    :param write_out: bool
435
436
437
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
438
439
    :param system_instruction: str
        System instruction to be applied to the prompt
440
441
442
443
444
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
445
446
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
447
448
449
450
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
451
452
453
    :return
        Dictionary of results
    """
454

455
456
457
458
459
460
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
461
462
463
464
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
465
    # tracks all Instances/requests a model must generate output on.
466
    requests = defaultdict(list)
467
468
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
469
    padding_requests = defaultdict(int)
470

471
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
472
    eval_tasks = get_task_list(task_dict)
473
    if not log_samples:
474
        if not all(
475
476
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
477
478
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
479

Hojin Lee's avatar
Hojin Lee committed
480
481
482
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
483
    incompatible_tasks = []
484
485
    for task_output in eval_tasks:
        task: Task = task_output.task
486

487
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
488
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
489
490
491
492
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
493
494
495
496
497
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
498
    # end validation check
499

Chenjie Luo's avatar
Chenjie Luo committed
500
501
502
    # Cache the limit arg.
    limit_arg = limit
    limits = []
503
504
505
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
506
507
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
508
509
        task.build_all_requests(
            limit=limit,
510
511
512
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
513
514
515
516
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
517
            system_instruction=system_instruction,
518
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
519
            fewshot_as_multiturn=fewshot_as_multiturn,
520
521
522
523
524
525
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
526
        )
527
        eval_logger.debug(
528
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
529
530
        )
        if write_out:
531
            print_writeout(task)
532
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
533
534
535
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
536
537

        if lm.world_size > 1:
538
539
540
541
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
542
543
544
545
546
547
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
548
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
549
            numpad = max(gathered_item) - gathered_item[lm.rank]
550
551
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
552

553
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
554
555
    # execute each type of request
    for reqtype, reqs in requests.items():
556
        eval_logger.info(f"Running {reqtype} requests")
557
558
559
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
Baber's avatar
Baber committed
560
561
            # Note: [req] * req.repeats creates multiple references to the same request object,
            # not separate copies. This means all repeated entries point to the same req.resps list
562
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
563

564
565
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
566
567
                cloned_reqs.extend([req] * req.repeats)

568
        # run requests through model
Baber's avatar
Baber committed
569
570
        # Since cloned_reqs contains references to original objects, each response
        # automatically gets appended to the correct req.resps list
571
572
573
574
575
576
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

577
578
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
579

580
581
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
582
583
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
584
    for task_output, limit in zip(eval_tasks, limits):
Baber's avatar
TODO!  
Baber committed
585
        task: ConfigurableTask = task_output.task
586
587
        task.apply_filters()

588
589
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
590
        # TODO: make it possible to use a different metric per filter
Baber's avatar
Baber committed
591
592
593
594
595
596
597
598
599
        _metrics, samples = task.calculate_metrics(
            indices=samples,
            rank=RANK,
            limit=limit,
            world_size=WORLD_SIZE,
        )
        task_output.sample_metrics = _metrics
        if log_samples:
            task_output.logged_samples = samples
600

601
602
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
603
        # first gather logged samples across all ranks
604
605
606
607
608
609
610
611
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
612
                )
613

614
615
616
617
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
618

619
620
621
622
623
624
625
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
626
                )
627
628
629
630
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
631

632
    if RANK == 0:
633
634
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
Baber's avatar
Baber committed
635
636
637
638
        for task_output in eval_tasks:
            task_output.agg_metrics = task_output.task.compute_agg_metrics(
                bootstrap_iters=bootstrap_iters
            )
639
640
641
642
643
644
645
646
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
647

648
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
649
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
665
666
667
668
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
669

Lintang Sutawika's avatar
Lintang Sutawika committed
670
671
672
673
674
675
676
677
678
679
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
680

681
        results_dict = {
682
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
683
684
685
686
687
688
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
689
690
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
691
            "n-shot": dict(sorted(num_fewshot.items())),
692
            "higher_is_better": dict(sorted(higher_is_better.items())),
693
694
695
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
696
697
698
699
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
700
                }
Chenjie Luo's avatar
Chenjie Luo committed
701
                for task_output, limit in zip(eval_tasks, limits)
702
            },
703
        }
704
705
706
707
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
708

709
710
    else:
        return None
711
712
713
714


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
715
716
717
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
718
719
720
    }

    return request_caching_args