evaluator.py 11.7 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Stephen Hogg's avatar
Stephen Hogg committed
3
import pathlib
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
9
import lm_eval.decontamination
10
import numpy as np
Stephen Hogg's avatar
Stephen Hogg committed
11
from lm_eval.utils import positional_deprecated, run_task_tests
12

13
@positional_deprecated
14
def simple_evaluate(model, model_args=None, tasks=[],
15
                    num_fewshot=0, batch_size=None, device=None,
16
                    no_cache=False, limit=None, bootstrap_iters=100000,
17
18
19
                    description_dict=None, check_integrity=False, 
                    decontamination_ngrams_path=None):

20
    """Instantiate and evaluate a model on a list of tasks.
21

22
23
24
25
26
27
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
        String arguments for each model class, see LM.create_from_arg_string. 
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
28
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
29
30
31
32
33
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
34
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
35
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
36
        Whether or not to cache
37
38
39
40
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
41
    :param description_dict: dict[str, str]
42
        Dictionary of custom task descriptions of the form: `task_name: description` 
Stephen Hogg's avatar
Stephen Hogg committed
43
44
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
45
    :return
46
        Dictionary of results
47
    """
48
49
50
    random.seed(1234)
    np.random.seed(1234)

51
52
53
54
55
56
57
58
59
60
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
        if model_args is None: model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
            'batch_size': batch_size, 'device': device
        })
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
61
62

    if not no_cache:
63
64
65
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
66
    
67
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
68

Stephen Hogg's avatar
Stephen Hogg committed
69
    if check_integrity:
70
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
71

72
73
74
75
76
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
77
        description_dict=description_dict,
Leo Gao's avatar
Leo Gao committed
78
        decontamination_ngrams_path=decontamination_ngrams_path, 
79
    )
80
81
82
83
84
85
86
87
88
89

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
90
91
        "bootstrap_iters": bootstrap_iters,
        "description_dict": description_dict
92
93
94
    }

    return results
Leo Gao's avatar
Leo Gao committed
95

96
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
97

98
@positional_deprecated
99
def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None, bootstrap_iters=100000, description_dict=None,
Leo Gao's avatar
Leo Gao committed
100
             decontamination_ngrams_path=None):
101
102
103
104
105
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
106
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
107
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
108
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
109
110
111
112
113
114
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
115
    :param description_dict: dict[str, str]
116
        Dictionary of custom task descriptions of the form: `task_name: description` 
117
118
119
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
120
121
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

122
123
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
124
125
126
    if provide_description is not None:
        # nudge people to not specify it at all
        print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")
127

Leo Gao's avatar
Leo Gao committed
128
    decontaminate = decontamination_ngrams_path is not None
129

130
131
132
133
134
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
135
136

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
137
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
138
139
140
141

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

142
143
    overlaps = collections.defaultdict(list) # {task_name: contaminated_docs}

144
145
146
147
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
148
149
150
151

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

152
153
    docs_for_decontamination = collections.defaultdict(list)

154
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
155
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
156
        versions[task_name] = task.VERSION
157
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
158
159
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
160
            task_doc_func = task.test_docs
161
            task_set = "test" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
162
        elif task.has_validation_docs():
163
            task_set = "val" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
164
            task_doc_func = task.validation_docs
165
166
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
167

Leo Gao's avatar
Leo Gao committed
168
169
170
171
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
172
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
173

174
175
        description = description_dict[task_name] if description_dict and task_name in description_dict else ""

Leo Gao's avatar
Leo Gao committed
176
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
177
178
179
180

            if decontaminate and task.should_decontaminate():
                docs_for_decontamination[(task_name, task_set)].append(task.doc_to_decontamination_query(doc))

Leo Gao's avatar
Leo Gao committed
181
182
183
184
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
                doc=doc,
                num_fewshot=num_fewshot,
185
186
                rnd=rnd,
                description=description
Leo Gao's avatar
Leo Gao committed
187
188
            )
            reqs = task.construct_requests(doc, ctx)
189
190
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
191
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
192
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
193
194
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
195
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
196

197
198
199
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
        print("Finding train/test overlap, please wait...")
Leo Gao's avatar
Leo Gao committed
200
        overlaps = lm_eval.decontamination.get_train_overlap(docs_for_decontamination, decontamination_ngrams_path, limit)
201

Leo Gao's avatar
Leo Gao committed
202
203
204
205
206
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
207
208
209
210
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
211

Leo Gao's avatar
Leo Gao committed
212
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
232
233
234
235
236

            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Leo Gao's avatar
Leo Gao committed
237
238
239
240
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
241
242
243
244
        real_metric = metric # key when looking up the metric with task.aggregation
        if metric.endswith(decontaminate_suffix):
            real_metric = metric.replace(decontaminate_suffix, "") # decontaminated still uses the same metric
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
245

246
247
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
248

249
        stderr = lm_eval.metrics.stderr_for_metric(
250
            metric=task.aggregation()[real_metric],
251
252
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
253
        
Leo Gao's avatar
Leo Gao committed
254
255
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
256
    
Leo Gao's avatar
Leo Gao committed
257
    return {
258
259
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
260
    }
261
262
263


def make_table(result_dict):
264
    """Generate table of results."""
265
266
267
268
269
270
271
272
273
274
275
276
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
277
278
            if m.endswith("_stderr"):
                continue
279
280
281
282
283
284
285
286
287
288
289
290
291
292

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

293
    return md_writer.dumps()