evaluator.py 29 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
    num_fewshot: Optional[int] = None,
53
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
77
    confirm_run_unsafe_code: bool = False,
Baber's avatar
Baber committed
78
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
):
80
    """Instantiate and evaluate a model on a list of tasks.
81

82
83
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
84
85
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
86
        Ignored if `model` argument is a LM object.
87
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
88
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
89
90
    :param num_fewshot: int
        Number of examples in few-shot context
91
    :param batch_size: int or str, optional
92
        Batch size for model
93
94
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
95
    :param device: str, optional
96
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
99
100
101
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber's avatar
Baber committed
102
        Rewrites all the request cache if set to `True`. `None` if not desired.
103
    :param delete_requests_cache: bool, optional
Baber's avatar
Baber committed
104
        Deletes all the request cache if set to `True`. `None` if not desired.
105
106
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
107
    :param bootstrap_iters:
108
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
109
110
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
111
    :param write_out: bool
112
113
114
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
115
116
    :param system_instruction: str
        System instruction to be applied to the prompt
117
118
119
120
121
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
124
125
126
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
127
128
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
129
130
131
132
133
134
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
135
136
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber's avatar
Baber committed
137
138
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
139

Baber's avatar
Baber committed
140
    return
141
        Dictionary of results
142
    """
143
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
144
    start_date = time.time()
145

146
147
148
149
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

150
    seed_message = []
151
152
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
153
        seed_message.append(f"Setting random seed to {random_seed}")
154
155
156
        random.seed(random_seed)

    if numpy_random_seed is not None:
157
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
158
159
160
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
161
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
162
163
        torch.manual_seed(torch_random_seed)

164
165
166
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

167
168
169
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

170
171
    if tasks is None:
        tasks = []
172
173
174
175
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
176

lintangsutawika's avatar
lintangsutawika committed
177
178
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
179
        eval_logger.warning(
180
181
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
182
        )
lintangsutawika's avatar
lintangsutawika committed
183
184
185
        if gen_kwargs == "":
            gen_kwargs = None

186
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
187
        if model_args is None:
188
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
189
            model_args = ""
190

191
        if isinstance(model_args, dict):
192
193
194
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
195
196
197
198
199
200
201
202
203
204
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
205
206
207
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
208
209
210
211
212
213
214
215
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
216
    else:
217
        if not isinstance(model, lm_eval.api.model.LM):
218
219
220
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
221
        eval_logger.info("Using pre-initialized model")
222
        lm = model
223

haileyschoelkopf's avatar
haileyschoelkopf committed
224
    if use_cache is not None:
225
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
226
227
228
229
230
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
231
232
233
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
234
235
        )

236
    if task_manager is None:
Baber's avatar
Baber committed
237
238
239
240
241
242
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
        ) | (metadata or {})
        task_manager = TaskManager(verbosity, metadata=metadata)
243

Baber's avatar
Baber committed
244
    task_dict = get_task_dict(
Baber's avatar
Baber committed
245
246
        tasks,
        task_manager,
Baber's avatar
Baber committed
247
    )
Baber Abbasi's avatar
Baber Abbasi committed
248

Lintang Sutawika's avatar
Lintang Sutawika committed
249
250
251
252
253
254
255
256
257
258
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
259

260
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
300

Stephen Hogg's avatar
Stephen Hogg committed
301
    if check_integrity:
302
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
303

KonradSzafer's avatar
KonradSzafer committed
304
305
306
307
308
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
309
310
311
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
312
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
313
314
        )

315
316
317
318
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
319
320
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
321
        bootstrap_iters=bootstrap_iters,
322
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
323
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
324
325
326
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
327
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
328
        confirm_run_unsafe_code=confirm_run_unsafe_code,
329
    )
330

331
    if lm.rank == 0:
332
333
334
335
336
337
338
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

339
340
        # add info about the model and few shot config
        results["config"] = {
341
            "model": model_name,
342
343
            "model_args": model_args,
        }
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
359
360
361
362
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
363
364
            }
        )
365
        results["git_hash"] = get_git_commit_hash()
366
        results["date"] = start_date
367
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
368
        add_tokenizer_info(results, lm)  # additional info about tokenizer
369
370
371
        return results
    else:
        return None
372

Leo Gao's avatar
Leo Gao committed
373

374
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
375
def evaluate(
376
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
377
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
378
    limit: Optional[int] = None,
379
380
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
381
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
382
383
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
384
    system_instruction: Optional[str] = None,
385
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
386
    fewshot_as_multiturn: bool = False,
387
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
388
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
389
):
390
391
392
393
394
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
395
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
396
397
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
398
399
400
401
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
402
    :param bootstrap_iters:
403
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
404
    :param write_out: bool
405
406
407
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
408
409
    :param system_instruction: str
        System instruction to be applied to the prompt
410
411
412
413
414
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
415
416
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
417
418
419
420
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
421
422
423
    :return
        Dictionary of results
    """
424

425
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
426

427
428
429
430
431
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

432
    # tracks all Instances/requests a model must generate output on.
433
    requests = defaultdict(list)
434
435
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
436
    padding_requests = defaultdict(int)
437

438
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
439
    eval_tasks = get_task_list(task_dict)
440
    if not log_samples:
441
        if not all(
442
443
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
444
445
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
446

Hojin Lee's avatar
Hojin Lee committed
447
448
449
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
450
    incompatible_tasks = []
451
452
    for task_output in eval_tasks:
        task: Task = task_output.task
453
454
455

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
456
457
458
459
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
460
461
462
463
464
465
466
467
468
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
469
    # end validation check
470

Chenjie Luo's avatar
Chenjie Luo committed
471
472
473
    # Cache the limit arg.
    limit_arg = limit
    limits = []
474
475
476
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
477
478
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
479
480
481
482
483
484
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
485
            system_instruction=system_instruction,
486
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
487
            fewshot_as_multiturn=fewshot_as_multiturn,
488
489
490
491
492
493
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
494
        )
495
        eval_logger.debug(
496
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
497
498
        )
        if write_out:
499
            print_writeout(task)
500
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
501
502
503
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
504
505

        if lm.world_size > 1:
506
507
508
509
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
510
511
512
513
514
515
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
516
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
517
            numpad = max(gathered_item) - gathered_item[lm.rank]
518
519
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
520

521
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
522
523
    # execute each type of request
    for reqtype, reqs in requests.items():
524
        eval_logger.info(f"Running {reqtype} requests")
525
526
527
528
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
529

530
531
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
532
533
                cloned_reqs.extend([req] * req.repeats)

534
535
536
537
538
539
540
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

541
542
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
543

544
545
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
546
547
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
548
    for task_output, limit in zip(eval_tasks, limits):
549
        task = task_output.task
550
551
        task.apply_filters()

552
553
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
554
        # TODO: make it possible to use a different metric per filter
555
        # Pre-process task.instances to group by doc_id
556
        instances_by_doc_id = defaultdict(list)
557
558
559
560
561
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
562
        # iterate over different filters used
563
564
565
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
566
            )
567
            for doc_id, doc in doc_iterator:
568
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
569
                metrics = task.process_results(
570
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
571
                )
572
573
574
575
576
577
578
579
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
580
581
582
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
583
584
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
585
586
587
588
589
590
591
592
593
594
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
595
596
                    }
                    example.update(metrics)
597
                    task_output.logged_samples.append(example)
598
                for metric, value in metrics.items():
599
                    task_output.sample_metrics[(metric, filter_key)].append(value)
600

601
602
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
603
        # first gather logged samples across all ranks
604
605
606
607
608
609
610
611
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
612
                )
613

614
615
616
617
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
618

619
620
621
622
623
624
625
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
626
                )
627
628
629
630
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
631

632
    if RANK == 0:
633
634
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
635
636
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
637
638
639
640
641
642
643
644
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
645

646
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
647
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
663
664
665
666
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
667

Lintang Sutawika's avatar
Lintang Sutawika committed
668
669
670
671
672
673
674
675
676
677
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
678

679
        results_dict = {
680
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
681
682
683
684
685
686
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
687
688
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
689
            "n-shot": dict(sorted(num_fewshot.items())),
690
            "higher_is_better": dict(sorted(higher_is_better.items())),
691
692
693
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
694
695
696
697
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
698
                }
Chenjie Luo's avatar
Chenjie Luo committed
699
                for task_output, limit in zip(eval_tasks, limits)
700
            },
701
        }
702
703
704
705
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
706

707
708
    else:
        return None
709
710
711
712


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
713
714
715
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
716
717
718
    }

    return request_caching_args