evaluator.py 28.9 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
44
    from lm_eval.api.task import Task
45
46


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
    num_fewshot: Optional[int] = None,
53
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
54
55
56
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
69
70
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
71
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
77
    confirm_run_unsafe_code: bool = False,
Baber's avatar
Baber committed
78
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
79
):
80
    """Instantiate and evaluate a model on a list of tasks.
81

82
83
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
84
85
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
86
        Ignored if `model` argument is a LM object.
87
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
88
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
89
90
    :param num_fewshot: int
        Number of examples in few-shot context
91
    :param batch_size: int or str, optional
92
        Batch size for model
93
94
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
95
    :param device: str, optional
96
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
97
98
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
99
100
101
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber's avatar
Baber committed
102
        Rewrites all the request cache if set to `True`. `None` if not desired.
103
    :param delete_requests_cache: bool, optional
Baber's avatar
Baber committed
104
        Deletes all the request cache if set to `True`. `None` if not desired.
105
106
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
107
    :param bootstrap_iters:
108
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
109
110
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
111
    :param write_out: bool
112
113
114
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
115
116
    :param system_instruction: str
        System instruction to be applied to the prompt
117
118
119
120
121
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
124
125
126
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
127
128
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
129
130
131
132
133
134
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
135
136
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
137

Baber's avatar
Baber committed
138
    return
139
        Dictionary of results
140
    """
141
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
142
    start_date = time.time()
143

144
145
146
147
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

148
    seed_message = []
149
150
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
151
        seed_message.append(f"Setting random seed to {random_seed}")
152
153
154
        random.seed(random_seed)

    if numpy_random_seed is not None:
155
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
156
157
158
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
159
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
160
161
        torch.manual_seed(torch_random_seed)

162
163
164
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

165
166
167
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

168
169
    if tasks is None:
        tasks = []
170
171
172
173
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
174

lintangsutawika's avatar
lintangsutawika committed
175
176
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
177
        eval_logger.warning(
178
179
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
180
        )
lintangsutawika's avatar
lintangsutawika committed
181
182
183
        if gen_kwargs == "":
            gen_kwargs = None

184
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
185
        if model_args is None:
186
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
187
            model_args = ""
188

189
        if isinstance(model_args, dict):
190
191
192
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
193
194
195
196
197
198
199
200
201
202
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
203
204
205
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
206
207
208
209
210
211
212
213
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
214
    else:
215
        if not isinstance(model, lm_eval.api.model.LM):
216
217
218
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
219
        eval_logger.info("Using pre-initialized model")
220
        lm = model
221

haileyschoelkopf's avatar
haileyschoelkopf committed
222
    if use_cache is not None:
223
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
224
225
226
227
228
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
229
230
231
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
232
233
        )

234
    if task_manager is None:
Baber's avatar
Baber committed
235
236
237
238
239
240
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
        ) | (metadata or {})
        task_manager = TaskManager(verbosity, metadata=metadata)
241

Baber's avatar
Baber committed
242
    task_dict = get_task_dict(
Baber's avatar
Baber committed
243
244
        tasks,
        task_manager,
Baber's avatar
Baber committed
245
    )
Baber Abbasi's avatar
Baber Abbasi committed
246

Lintang Sutawika's avatar
Lintang Sutawika committed
247
248
249
250
251
252
253
254
255
256
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
257

258
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
298

Stephen Hogg's avatar
Stephen Hogg committed
299
    if check_integrity:
300
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
301

KonradSzafer's avatar
KonradSzafer committed
302
303
304
305
306
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
307
308
309
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
310
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
311
312
        )

313
314
315
316
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
317
318
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
319
        bootstrap_iters=bootstrap_iters,
320
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
321
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
322
323
324
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
325
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
326
        confirm_run_unsafe_code=confirm_run_unsafe_code,
327
    )
328

329
    if lm.rank == 0:
330
331
332
333
334
335
336
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

337
338
        # add info about the model and few shot config
        results["config"] = {
339
            "model": model_name,
340
341
            "model_args": model_args,
        }
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
357
358
359
360
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
361
362
            }
        )
363
        results["git_hash"] = get_git_commit_hash()
364
        results["date"] = start_date
365
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
366
        add_tokenizer_info(results, lm)  # additional info about tokenizer
367
368
369
        return results
    else:
        return None
370

Leo Gao's avatar
Leo Gao committed
371

372
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
373
def evaluate(
374
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
375
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
376
    limit: Optional[int] = None,
377
378
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
379
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
380
381
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
382
    system_instruction: Optional[str] = None,
383
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
384
    fewshot_as_multiturn: bool = False,
385
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
386
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
387
):
388
389
390
391
392
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
393
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
394
395
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
396
397
398
399
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
400
    :param bootstrap_iters:
401
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
402
    :param write_out: bool
403
404
405
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
406
407
    :param system_instruction: str
        System instruction to be applied to the prompt
408
409
410
411
412
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
413
414
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
415
416
417
418
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
419
420
421
    :return
        Dictionary of results
    """
422

423
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
424

425
426
427
428
429
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

430
    # tracks all Instances/requests a model must generate output on.
431
    requests = defaultdict(list)
432
433
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
434
    padding_requests = defaultdict(int)
435

436
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
437
    eval_tasks = get_task_list(task_dict)
438
    if not log_samples:
439
        if not all(
440
441
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
442
443
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
444

Hojin Lee's avatar
Hojin Lee committed
445
446
447
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
448
    incompatible_tasks = []
449
450
    for task_output in eval_tasks:
        task: Task = task_output.task
451
452
453

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
454
455
456
457
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
458
459
460
461
462
463
464
465
466
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
467
    # end validation check
468

Chenjie Luo's avatar
Chenjie Luo committed
469
470
471
    # Cache the limit arg.
    limit_arg = limit
    limits = []
472
473
474
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
475
476
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
477
478
479
480
481
482
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
483
            system_instruction=system_instruction,
484
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
485
            fewshot_as_multiturn=fewshot_as_multiturn,
486
487
488
489
490
491
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
492
        )
493
        eval_logger.debug(
494
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
495
496
        )
        if write_out:
497
            print_writeout(task)
498
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
499
500
501
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
502
503

        if lm.world_size > 1:
504
505
506
507
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
508
509
510
511
512
513
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
514
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
515
            numpad = max(gathered_item) - gathered_item[lm.rank]
516
517
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
518

519
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
520
521
    # execute each type of request
    for reqtype, reqs in requests.items():
522
        eval_logger.info(f"Running {reqtype} requests")
523
524
525
526
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
527

528
529
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
530
531
                cloned_reqs.extend([req] * req.repeats)

532
533
534
535
536
537
538
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

539
540
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
541

542
543
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
544
545
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
546
    for task_output, limit in zip(eval_tasks, limits):
547
        task = task_output.task
548
549
        task.apply_filters()

550
551
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
552
        # TODO: make it possible to use a different metric per filter
553
        # Pre-process task.instances to group by doc_id
554
        instances_by_doc_id = defaultdict(list)
555
556
557
558
559
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
560
        # iterate over different filters used
561
562
563
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
564
            )
565
            for doc_id, doc in doc_iterator:
566
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
567
                metrics = task.process_results(
568
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
569
                )
570
571
572
573
574
575
576
577
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
578
579
580
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
581
582
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
583
584
585
586
587
588
589
590
591
592
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
593
594
                    }
                    example.update(metrics)
595
                    task_output.logged_samples.append(example)
596
                for metric, value in metrics.items():
597
                    task_output.sample_metrics[(metric, filter_key)].append(value)
598

599
600
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
601
        # first gather logged samples across all ranks
602
603
604
605
606
607
608
609
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
610
                )
611

612
613
614
615
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
616

617
618
619
620
621
622
623
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
624
                )
625
626
627
628
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
629

630
    if RANK == 0:
631
632
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
633
634
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
635
636
637
638
639
640
641
642
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
643

644
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
645
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
661
662
663
664
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
665

Lintang Sutawika's avatar
Lintang Sutawika committed
666
667
668
669
670
671
672
673
674
675
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
676

677
        results_dict = {
678
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
679
680
681
682
683
684
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
685
686
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
687
            "n-shot": dict(sorted(num_fewshot.items())),
688
            "higher_is_better": dict(sorted(higher_is_better.items())),
689
690
691
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
692
693
694
695
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
696
                }
Chenjie Luo's avatar
Chenjie Luo committed
697
                for task_output, limit in zip(eval_tasks, limits)
698
            },
699
        }
700
701
702
703
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
704

705
706
    else:
        return None
707
708
709
710


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
711
712
713
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
714
715
716
    }

    return request_caching_args