qasper.py 7.45 KB
Newer Older
1
2
3
4
""" 
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
https://arxiv.org/abs/2105.03011

5
6
7
8
9
10
11
12
QASPER is a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract
of the corresponding paper, and the question seeks information present in the full
text. The questions are then answered by a separate set of NLP practitioners who also
provide supporting evidence to answers.

Homepage: https://allenai.org/data/qasper

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@article{DBLP:journals/corr/abs-2105-03011,
  author    = {Pradeep Dasigi and
               Kyle Lo and
               Iz Beltagy and
               Arman Cohan and
               Noah A. Smith and
               Matt Gardner},
  title     = {A Dataset of Information-Seeking Questions and Answers Anchored in
               Research Papers},
  journal   = {CoRR},
  volume    = {abs/2105.03011},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.03011},
  eprinttype = {arXiv},
  eprint    = {2105.03011},
  timestamp = {Fri, 14 May 2021 12:13:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
33
from collections import Counter
34
from math import exp
Stephen Hogg's avatar
Stephen Hogg committed
35
import random
36
37
import re
import string
38
from lm_eval.base import rf
39
from lm_eval.metrics import f1_score, mean
40
41
42
from .common import HFTask


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def normalize_answer(s):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    Lower text and remove punctuation, articles and extra whitespace.
    """

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def categorise_answer(answer_blob):
    if answer_blob["unanswerable"]:
        answer = "unanswerable"
        answer_type = "unanswerable"
        return answer, answer_type
    elif answer_blob["yes_no"]:
71
        answer = "yes"
72
73
74
75
76
77
78
79
        answer_type = "bool"
        return answer, answer_type
    elif answer_blob["free_form_answer"]:
        answer = answer_blob["free_form_answer"]
        answer_type = "free form answer"
        return answer, answer_type
    elif answer_blob["extractive_spans"]:
        answer = answer_blob["extractive_spans"]
Stephen Hogg's avatar
Stephen Hogg committed
80
        answer_type = "extractive_spans"
81
82
        return answer, answer_type
    elif answer_blob["yes_no"] is False:
83
        answer = "no"
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        answer_type = "bool"
        return answer, answer_type


def token_f1_score(prediction, ground_truth):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    """
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class QASPER(HFTask):
    VERSION = 0
    DATASET_PATH = "qasper"
    DATASET_NAME = None

    def doc_to_text(self, doc):
        return (
            "TITLE: "
            + doc["title"]
            + "\n"
            + "ABSTRACT: "
            + doc["abstract"]
            + "\n\n"
            + "Q: "
            + doc["question"]
            + "\n\n"
Stephen Hogg's avatar
Stephen Hogg committed
120
            + "A:"
121
122
123
        )

    def doc_to_target(self, doc):
Stephen Hogg's avatar
Stephen Hogg committed
124
125
126
127
        answer = doc["answer"]
        if isinstance(answer, list):
            answer = ", ".join(answer)
        return " " + answer
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    def training_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def validation_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def process_doc(self, doc):
        """Given a `doc`, flatten it out so that each JSON blob
        contains exactly one question and one answer. Logic taken from
        the reference implementation available at
        https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py
        """
        obs_list = []
144
145
146
147
148
149
150
151
152
153
154
155
        for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]):
            for answer_blob in answer_list["answer"]:
                answer, answer_type = categorise_answer(answer_blob)
                obs_list.append(
                    {
                        "title": doc["title"],
                        "abstract": doc["abstract"],
                        "question": question,
                        "answer": answer,
                        "answer_type": answer_type,
                    }
                )
156
157
158
        return obs_list

    def process_results(self, doc, results):
Stephen Hogg's avatar
Stephen Hogg committed
159
160
        # TODO: Calculate a score for extractive spans once a request type for generating
        # extractive spans is available
161
162
163
164
        if not results:
            return {}
        elif len(results) == 1:
            [res] = results
Stephen Hogg's avatar
Stephen Hogg committed
165
        elif len(results) == 2:
166
            [ll_yes, ll_no] = results
167

Stephen Hogg's avatar
Stephen Hogg committed
168
169
170
171
        # TODO: Handle unanswerability first
        # unanswerable_gold = doc["answer_type"] == "unanswerable"
        # unanswerable_pred = exp(logprob_unanswerable)
        # res_dict["f1_unanswerable"] = (unanswerable_gold, unanswerable_pred)
172

173
        res_dict = {}
174
175
176
177
        # Handle yes/no questions
        if doc["answer_type"] == "bool":
            gold = 1 if doc["answer"] == "yes" else 0
            pred = ll_yes > ll_no
Stephen Hogg's avatar
Stephen Hogg committed
178
            res_dict["f1_yesno"] = (gold, pred)
179
180
181

        # Handle completions
        if doc["answer_type"] == "free form answer":
Stephen Hogg's avatar
Stephen Hogg committed
182
            res_dict["f1_abstractive"] = token_f1_score(res, doc["answer"])
183

184
185
186
        # TODO: Handle extraction
        # if doc["answer_type"] == "extractive_spans":
        #     res_dict["f1_extractive"] = 0
187
188
189
        return res_dict

    def aggregation(self):
Stephen Hogg's avatar
Stephen Hogg committed
190
191
192
193
        return {
            "f1_yesno": f1_score,
            "f1_abstractive": mean,
        }
194
195
196
197
198
199
200
201
202
203
204
205

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
206
207
208
        # unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
        if doc["answer_type"] in ("free form answer"):
            return [rf.greedy_until(ctx, ["\n"])]
209
210
211
        elif doc["answer_type"] in ("bool"):
            ll_yes, _ = rf.loglikelihood(ctx, " yes")
            ll_no, _ = rf.loglikelihood(ctx, " no")
212
            return [ll_yes, ll_no]
213
        else:
214
            return []
215
216
217
218
219
220
221

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Stephen Hogg's avatar
Stephen Hogg committed
222
223
224
225
        return {
            "f1_yesno": True,
            "f1_abstractive": True,
        }