qasper.py 7.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
""" 
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
https://arxiv.org/abs/2105.03011

@article{DBLP:journals/corr/abs-2105-03011,
  author    = {Pradeep Dasigi and
               Kyle Lo and
               Iz Beltagy and
               Arman Cohan and
               Noah A. Smith and
               Matt Gardner},
  title     = {A Dataset of Information-Seeking Questions and Answers Anchored in
               Research Papers},
  journal   = {CoRR},
  volume    = {abs/2105.03011},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.03011},
  eprinttype = {arXiv},
  eprint    = {2105.03011},
  timestamp = {Fri, 14 May 2021 12:13:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
25
from collections import Counter
26
from math import exp
Stephen Hogg's avatar
Stephen Hogg committed
27
import random
28
29
import re
import string
30
from lm_eval.base import rf
31
from lm_eval.metrics import f1_score, mean
32
33
34
from .common import HFTask


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def normalize_answer(s):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    Lower text and remove punctuation, articles and extra whitespace.
    """

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def categorise_answer(answer_blob):
    if answer_blob["unanswerable"]:
        answer = "unanswerable"
        answer_type = "unanswerable"
        return answer, answer_type
    elif answer_blob["yes_no"]:
63
        answer = "yes"
64
65
66
67
68
69
70
71
        answer_type = "bool"
        return answer, answer_type
    elif answer_blob["free_form_answer"]:
        answer = answer_blob["free_form_answer"]
        answer_type = "free form answer"
        return answer, answer_type
    elif answer_blob["extractive_spans"]:
        answer = answer_blob["extractive_spans"]
Stephen Hogg's avatar
Stephen Hogg committed
72
        answer_type = "extractive_spans"
73
74
        return answer, answer_type
    elif answer_blob["yes_no"] is False:
75
        answer = "no"
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        answer_type = "bool"
        return answer, answer_type


def token_f1_score(prediction, ground_truth):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    """
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
class QASPER(HFTask):
    VERSION = 0
    DATASET_PATH = "qasper"
    DATASET_NAME = None

    def doc_to_text(self, doc):
        return (
            "TITLE: "
            + doc["title"]
            + "\n"
            + "ABSTRACT: "
            + doc["abstract"]
            + "\n\n"
            + "Q: "
            + doc["question"]
            + "\n\n"
Stephen Hogg's avatar
Stephen Hogg committed
112
            + "A:"
113
114
115
        )

    def doc_to_target(self, doc):
Stephen Hogg's avatar
Stephen Hogg committed
116
117
118
119
        answer = doc["answer"]
        if isinstance(answer, list):
            answer = ", ".join(answer)
        return " " + answer
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    def training_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def validation_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def process_doc(self, doc):
        """Given a `doc`, flatten it out so that each JSON blob
        contains exactly one question and one answer. Logic taken from
        the reference implementation available at
        https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py
        """
        obs_list = []
136
137
138
139
140
141
142
143
144
145
146
147
        for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]):
            for answer_blob in answer_list["answer"]:
                answer, answer_type = categorise_answer(answer_blob)
                obs_list.append(
                    {
                        "title": doc["title"],
                        "abstract": doc["abstract"],
                        "question": question,
                        "answer": answer,
                        "answer_type": answer_type,
                    }
                )
148
149
150
        return obs_list

    def process_results(self, doc, results):
Stephen Hogg's avatar
Stephen Hogg committed
151
152
153
154
155
156
157
158
        # TODO: Calculate a score for extractive spans once a request type for generating
        # extractive spans is available
        if len(results) == 1:
            [(logprob_unanswerable, _)] = results
        elif len(results) == 2:
            res, (logprob_unanswerable, _) = results
        else:
            ll_yes, ll_no, (logprob_unanswerable, _) = results
159
160
        res_dict = {}

Stephen Hogg's avatar
Stephen Hogg committed
161
162
163
164
        # TODO: Handle unanswerability first
        # unanswerable_gold = doc["answer_type"] == "unanswerable"
        # unanswerable_pred = exp(logprob_unanswerable)
        # res_dict["f1_unanswerable"] = (unanswerable_gold, unanswerable_pred)
165
166
167
168
169

        # Handle yes/no questions
        if doc["answer_type"] == "bool":
            gold = 1 if doc["answer"] == "yes" else 0
            pred = ll_yes > ll_no
Stephen Hogg's avatar
Stephen Hogg committed
170
            res_dict["f1_yesno"] = (gold, pred)
171
172
173

        # Handle completions
        if doc["answer_type"] == "free form answer":
Stephen Hogg's avatar
Stephen Hogg committed
174
            res_dict["f1_abstractive"] = token_f1_score(res, doc["answer"])
175

176
177
178
        # TODO: Handle extraction
        # if doc["answer_type"] == "extractive_spans":
        #     res_dict["f1_extractive"] = 0
179
180
181
        return res_dict

    def aggregation(self):
Stephen Hogg's avatar
Stephen Hogg committed
182
183
184
185
        return {
            "f1_yesno": f1_score,
            "f1_abstractive": mean,
        }
186
187
188
189
190
191
192
193
194
195
196
197

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
198
        unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
Stephen Hogg's avatar
Stephen Hogg committed
199
200
        if doc["answer_type"] in ("free form answer", "extractive_spans"):
            return [rf.greedy_until(ctx, ["\n"]), unanswerable]
201
202
203
        elif doc["answer_type"] in ("bool"):
            ll_yes, _ = rf.loglikelihood(ctx, " yes")
            ll_no, _ = rf.loglikelihood(ctx, " no")
Stephen Hogg's avatar
Stephen Hogg committed
204
            return [ll_yes, ll_no, unanswerable]
205
        else:
Stephen Hogg's avatar
Stephen Hogg committed
206
            return [unanswerable]
207
208
209
210
211
212
213

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Stephen Hogg's avatar
Stephen Hogg committed
214
215
216
217
        return {
            "f1_yesno": True,
            "f1_abstractive": True,
        }