qasper.py 7.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
""" 
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
https://arxiv.org/abs/2105.03011

@article{DBLP:journals/corr/abs-2105-03011,
  author    = {Pradeep Dasigi and
               Kyle Lo and
               Iz Beltagy and
               Arman Cohan and
               Noah A. Smith and
               Matt Gardner},
  title     = {A Dataset of Information-Seeking Questions and Answers Anchored in
               Research Papers},
  journal   = {CoRR},
  volume    = {abs/2105.03011},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.03011},
  eprinttype = {arXiv},
  eprint    = {2105.03011},
  timestamp = {Fri, 14 May 2021 12:13:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
25
from collections import Counter
26
from math import exp
27
28
import re
import string
29
from lm_eval.base import rf
30
from lm_eval.metrics import f1_score, mean
31
32
33
from .common import HFTask


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def normalize_answer(s):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    Lower text and remove punctuation, articles and extra whitespace.
    """

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def categorise_answer(answer_blob):
    if answer_blob["unanswerable"]:
        answer = "unanswerable"
        answer_type = "unanswerable"
        return answer, answer_type
    elif answer_blob["yes_no"]:
        answer = "Yes"
        answer_type = "bool"
        return answer, answer_type
    elif answer_blob["free_form_answer"]:
        answer = answer_blob["free_form_answer"]
        answer_type = "free form answer"
        return answer, answer_type
    elif answer_blob["extractive_spans"]:
        answer = answer_blob["extractive_spans"]
Stephen Hogg's avatar
Stephen Hogg committed
71
        answer_type = "extractive_spans"
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        return answer, answer_type
    elif answer_blob["yes_no"] is False:
        answer = "No"
        answer_type = "bool"
        return answer, answer_type


def token_f1_score(prediction, ground_truth):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    """
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def paragraph_f1_score(prediction, ground_truth):
    num_same = len(set(ground_truth).intersection(set(prediction)))
    if num_same == 0:
        return 0.0
    precision = num_same / len(prediction)
    recall = num_same / len(ground_truth)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class QASPER(HFTask):
    VERSION = 0
    DATASET_PATH = "qasper"
    DATASET_NAME = None

    def doc_to_text(self, doc):
        return (
            "TITLE: "
            + doc["title"]
            + "\n"
            + "ABSTRACT: "
            + doc["abstract"]
            + "\n\n"
            + "Q: "
            + doc["question"]
            + "\n\n"
Stephen Hogg's avatar
Stephen Hogg committed
121
            + "A:"
122
123
124
        )

    def doc_to_target(self, doc):
Stephen Hogg's avatar
Stephen Hogg committed
125
126
127
128
        answer = doc["answer"]
        if isinstance(answer, list):
            answer = ", ".join(answer)
        return " " + answer
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def training_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def validation_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def process_doc(self, doc):
        """Given a `doc`, flatten it out so that each JSON blob
        contains exactly one question and one answer. Logic taken from
        the reference implementation available at
        https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py
        """
        obs_list = []
145
146
147
148
149
150
151
152
153
154
155
156
        for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]):
            for answer_blob in answer_list["answer"]:
                answer, answer_type = categorise_answer(answer_blob)
                obs_list.append(
                    {
                        "title": doc["title"],
                        "abstract": doc["abstract"],
                        "question": question,
                        "answer": answer,
                        "answer_type": answer_type,
                    }
                )
157
158
159
        return obs_list

    def process_results(self, doc, results):
Stephen Hogg's avatar
Stephen Hogg committed
160
161
162
163
164
165
166
167
        # TODO: Calculate a score for extractive spans once a request type for generating
        # extractive spans is available
        if len(results) == 1:
            [(logprob_unanswerable, _)] = results
        elif len(results) == 2:
            res, (logprob_unanswerable, _) = results
        else:
            ll_yes, ll_no, (logprob_unanswerable, _) = results
168
169
170
171
        res_dict = {}

        # Handle unanswerability first
        unanswerable_gold = doc["answer_type"] == "unanswerable"
Stephen Hogg's avatar
Stephen Hogg committed
172
        unanswerable_pred = exp(logprob_unanswerable) > 1 - exp(logprob_unanswerable)
Stephen Hogg's avatar
Stephen Hogg committed
173
        res_dict["f1_unanswerable"] = (unanswerable_gold, unanswerable_pred)
174
175
176
177
178

        # Handle yes/no questions
        if doc["answer_type"] == "bool":
            gold = 1 if doc["answer"] == "yes" else 0
            pred = ll_yes > ll_no
Stephen Hogg's avatar
Stephen Hogg committed
179
            res_dict["f1_yesno"] = (gold, pred)
180
181
182

        # Handle completions
        if doc["answer_type"] == "free form answer":
Stephen Hogg's avatar
Stephen Hogg committed
183
            res_dict["f1_abstractive"] = token_f1_score(res, doc["answer"])
184
185

        # Handle extraction
Stephen Hogg's avatar
Stephen Hogg committed
186
        if doc["answer_type"] == "extractive_spans":
Stephen Hogg's avatar
Stephen Hogg committed
187
            res_dict["f1_extractive"] = 0
188
189
190
        return res_dict

    def aggregation(self):
Stephen Hogg's avatar
Stephen Hogg committed
191
192
193
194
195
196
        return {
            "f1_unanswerable": f1_score,
            "f1_yesno": f1_score,
            "f1_abstractive": mean,
            "f1_extractive": mean,
        }
197
198
199
200
201
202
203
204
205
206
207
208

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
209
        unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
Stephen Hogg's avatar
Stephen Hogg committed
210
211
        if doc["answer_type"] in ("free form answer", "extractive_spans"):
            return [rf.greedy_until(ctx, ["\n"]), unanswerable]
212
213
214
        elif doc["answer_type"] in ("bool"):
            ll_yes, _ = rf.loglikelihood(ctx, " yes")
            ll_no, _ = rf.loglikelihood(ctx, " no")
Stephen Hogg's avatar
Stephen Hogg committed
215
            return [ll_yes, ll_no, unanswerable]
216
        else:
Stephen Hogg's avatar
Stephen Hogg committed
217
            return [unanswerable]
218
219
220
221
222
223
224

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Stephen Hogg's avatar
Stephen Hogg committed
225
226
227
228
229
230
        return {
            "f1_unanswerable": True,
            "f1_yesno": True,
            "f1_abstractive": True,
            "f1_extractive": True,
        }