qasper.py 7.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
""" 
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
https://arxiv.org/abs/2105.03011

@article{DBLP:journals/corr/abs-2105-03011,
  author    = {Pradeep Dasigi and
               Kyle Lo and
               Iz Beltagy and
               Arman Cohan and
               Noah A. Smith and
               Matt Gardner},
  title     = {A Dataset of Information-Seeking Questions and Answers Anchored in
               Research Papers},
  journal   = {CoRR},
  volume    = {abs/2105.03011},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.03011},
  eprinttype = {arXiv},
  eprint    = {2105.03011},
  timestamp = {Fri, 14 May 2021 12:13:30 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
25
from collections import Counter
26
from math import exp
27
28
import re
import string
29
from lm_eval.base import rf
30
from lm_eval.metrics import f1_score, mean
31
32
33
from .common import HFTask


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def normalize_answer(s):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    Lower text and remove punctuation, articles and extra whitespace.
    """

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def categorise_answer(answer_blob):
    if answer_blob["unanswerable"]:
        answer = "unanswerable"
        answer_type = "unanswerable"
        return answer, answer_type
    elif answer_blob["yes_no"]:
        answer = "Yes"
        answer_type = "bool"
        return answer, answer_type
    elif answer_blob["free_form_answer"]:
        answer = answer_blob["free_form_answer"]
        answer_type = "free form answer"
        return answer, answer_type
    elif answer_blob["extractive_spans"]:
        answer = answer_blob["extractive_spans"]
Stephen Hogg's avatar
Stephen Hogg committed
71
        answer_type = "extractive_spans"
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        return answer, answer_type
    elif answer_blob["yes_no"] is False:
        answer = "No"
        answer_type = "bool"
        return answer, answer_type


def token_f1_score(prediction, ground_truth):
    """
    Taken from the official evaluation script for v1.1 of the SQuAD dataset.
    """
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def paragraph_f1_score(prediction, ground_truth):
    num_same = len(set(ground_truth).intersection(set(prediction)))
    if num_same == 0:
        return 0.0
    precision = num_same / len(prediction)
    recall = num_same / len(ground_truth)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
class QASPER(HFTask):
    VERSION = 0
    DATASET_PATH = "qasper"
    DATASET_NAME = None

    def doc_to_text(self, doc):
        # this method is invoked by tests only
        return (
            "TITLE: "
            + doc["title"]
            + "\n"
            + "ABSTRACT: "
            + doc["abstract"]
            + "\n\n"
            + "Q: "
            + doc["question"]
            + "\n\n"
Stephen Hogg's avatar
Stephen Hogg committed
122
            + "A:"
123
124
125
126
        )

    def doc_to_target(self, doc):
        # this method is invoked by tests only
Stephen Hogg's avatar
Stephen Hogg committed
127
128
129
130
        answer = doc["answer"]
        if isinstance(answer, list):
            answer = ", ".join(answer)
        return " " + answer
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    def training_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def validation_docs(self):
        for doc in self.data["train"]:
            yield from self.process_doc(doc)

    def process_doc(self, doc):
        """Given a `doc`, flatten it out so that each JSON blob
        contains exactly one question and one answer. Logic taken from
        the reference implementation available at
        https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py
        """
        obs_list = []
147
148
149
150
151
152
153
154
155
156
157
158
        for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]):
            for answer_blob in answer_list["answer"]:
                answer, answer_type = categorise_answer(answer_blob)
                obs_list.append(
                    {
                        "title": doc["title"],
                        "abstract": doc["abstract"],
                        "question": question,
                        "answer": answer,
                        "answer_type": answer_type,
                    }
                )
159
160
161
        return obs_list

    def process_results(self, doc, results):
Stephen Hogg's avatar
Stephen Hogg committed
162
163
164
165
166
167
168
169
        # TODO: Calculate a score for extractive spans once a request type for generating
        # extractive spans is available
        if len(results) == 1:
            [(logprob_unanswerable, _)] = results
        elif len(results) == 2:
            res, (logprob_unanswerable, _) = results
        else:
            ll_yes, ll_no, (logprob_unanswerable, _) = results
170
171
172
173
        res_dict = {}

        # Handle unanswerability first
        unanswerable_gold = doc["answer_type"] == "unanswerable"
Stephen Hogg's avatar
Stephen Hogg committed
174
        unanswerable_pred = exp(logprob_unanswerable) > 1 - exp(logprob_unanswerable)
175
176
177
178
179
180
181
182
183
184
        res_dict["f1_un"] = (unanswerable_gold, unanswerable_pred)

        # Handle yes/no questions
        if doc["answer_type"] == "bool":
            gold = 1 if doc["answer"] == "yes" else 0
            pred = ll_yes > ll_no
            res_dict["f1_yn"] = (gold, pred)

        # Handle completions
        if doc["answer_type"] == "free form answer":
Stephen Hogg's avatar
Stephen Hogg committed
185
            res_dict["f1_ab"] = token_f1_score(res, doc["answer"])
186
187

        # Handle extraction
Stephen Hogg's avatar
Stephen Hogg committed
188
189
        if doc["answer_type"] == "extractive_spans":
            res_dict["f1_ex"] = 0
190
191
192
        return res_dict

    def aggregation(self):
193
        return {"f1_un": f1_score, "f1_yn": f1_score, "f1_ab": mean, "f1_ex": mean}
194
195
196
197
198
199
200
201
202
203
204
205

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
206
        unanswerable = rf.loglikelihood(ctx, " " + "unanswerable")
Stephen Hogg's avatar
Stephen Hogg committed
207
208
        if doc["answer_type"] in ("free form answer", "extractive_spans"):
            return [rf.greedy_until(ctx, ["\n"]), unanswerable]
209
210
211
        elif doc["answer_type"] in ("bool"):
            ll_yes, _ = rf.loglikelihood(ctx, " yes")
            ll_no, _ = rf.loglikelihood(ctx, " no")
Stephen Hogg's avatar
Stephen Hogg committed
212
            return [ll_yes, ll_no, unanswerable]
213
        else:
Stephen Hogg's avatar
Stephen Hogg committed
214
            return [unanswerable]
215
216
217
218
219
220
221
222

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        return {"f1_un": True, "f1_yn": True, "f1_ab": True, "f1_ex": True}