glue.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
https://openreview.net/pdf?id=rJ4km2R5t7

The General Language Understanding Evaluation (GLUE) benchmark is a collection of
resources for training, evaluating, and analyzing natural language understanding
systems. GLUE consists of:
- A benchmark of nine sentence- or sentence-pair language understanding tasks built
on established existing datasets and selected to cover a diverse range of dataset
sizes, text genres, and degrees of difficulty, and
- A diagnostic dataset designed to evaluate and analyze model performance with
respect to a wide range of linguistic phenomena found in natural language.

Homepage: https://gluebenchmark.com/

@inproceedings{wang-etal-2018-glue,
    title = "{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
    author = "Wang, Alex  and
      Singh, Amanpreet  and
      Michael, Julian  and
      Hill, Felix  and
      Levy, Omer  and
      Bowman, Samuel",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5446",
    doi = "10.18653/v1/W18-5446",
    pages = "353--355",
    abstract = "Human ability to understand language is \textit{general, flexible, and robust}. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.",
}
"""
Jason Phang's avatar
checkin  
Jason Phang committed
35
import numpy as np
&'s avatar
& committed
36
37
from lm_eval.base import rf
from ..metrics import mean, matthews_corrcoef, f1_score
Jonathan Tow's avatar
Jonathan Tow committed
38
from . common import HFTask, yesno
Leo Gao's avatar
Leo Gao committed
39
from ..utils import general_detokenize
Jonathan Tow's avatar
Jonathan Tow committed
40
41

# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
42
43


sdtblck's avatar
sdtblck committed
44
class CoLA(HFTask):
Leo Gao's avatar
Leo Gao committed
45
    VERSION = 0
sdtblck's avatar
sdtblck committed
46
47
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
48

Jason Phang's avatar
checkin  
Jason Phang committed
49
50
51
52
53
54
55
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
56
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
57

58
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
59
        return "{}\nQuestion: Does this sentence make sense?\nAnswer:".format(doc["sentence"])
60
61

    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
62
        return " {}".format({1: "yes", 0: "no"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
63

Jonathan Tow's avatar
Jonathan Tow committed
64
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
65
66
        ll_true, _ = rf.loglikelihood(ctx, " yes")
        ll_false, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
67
        return ll_true, ll_false
68

Jonathan Tow's avatar
Jonathan Tow committed
69
70
71
72
73
74
75
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_true > ll_false
        gold = doc["label"]
        return {
            "mcc": (gold, pred)
        }
76

Jonathan Tow's avatar
Jonathan Tow committed
77
    def higher_is_better(self):
Jason Phang's avatar
checkin  
Jason Phang committed
78
        return {
Jonathan Tow's avatar
Jonathan Tow committed
79
80
81
82
83
84
85
86
87
88
            "mcc": True
        }

    def aggregation(self):
        return {
            "mcc": matthews_corrcoef
        }


class SST(HFTask):
Leo Gao's avatar
Leo Gao committed
89
    VERSION = 0
Jonathan Tow's avatar
Jonathan Tow committed
90
91
92
93
94
95
96
97
98
99
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
100
        return False
Jonathan Tow's avatar
Jonathan Tow committed
101
102

    def doc_to_text(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
103
        return "{}\nQuestion: Is this sentence positive or negative?\nAnswer:".format(
Leo Gao's avatar
Leo Gao committed
104
            general_detokenize(doc["sentence"]),
Jonathan Tow's avatar
Jonathan Tow committed
105
106
107
        )

    def doc_to_target(self, doc):
Leo Gao's avatar
Fix  
Leo Gao committed
108
        return " {}".format({1: "positive", 0: "negative"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
109
110

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
111
112
        ll_positive, _ = rf.loglikelihood(ctx, " positive")
        ll_negative, _ = rf.loglikelihood(ctx, " negative")
Jonathan Tow's avatar
Jonathan Tow committed
113
114
115
116
117
118
119
120
121
122
123
124
125
        return ll_positive, ll_negative

    def process_results(self, doc, results):
        ll_positive, ll_negative = results
        pred = ll_positive > ll_negative
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
Jason Phang's avatar
checkin  
Jason Phang committed
126
127
        }

Jonathan Tow's avatar
Jonathan Tow committed
128
129
130
131
132
133
134
135
    def aggregation(self):
        return {
            "acc": mean
        }


# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
136

sdtblck's avatar
sdtblck committed
137
class MNLI(HFTask):
Leo Gao's avatar
Leo Gao committed
138
    VERSION = 0
sdtblck's avatar
sdtblck committed
139
140
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
141

Jason Phang's avatar
checkin  
Jason Phang committed
142
143
144
145
146
147
148
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
149
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
150
151
152

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
153
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
154
155
156

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
157
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
158

159
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
160
        return "{}\nQuestion: {} True, False or Neither?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
161
            doc["premise"],
Leo Gao's avatar
Fix  
Leo Gao committed
162
            doc["hypothesis"].strip() + ('' if doc["hypothesis"].strip().endswith('.') else '.'),
Jason Phang's avatar
checkin  
Jason Phang committed
163
        )
164
165
166
167
168
169

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
170

Jonathan Tow's avatar
Jonathan Tow committed
171
172
173
174
175
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false
176

Jonathan Tow's avatar
Jonathan Tow committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
checkin  
Jason Phang committed
193
194


Jason Phang's avatar
Jason Phang committed
195
class MNLIMismatched(MNLI):
Leo Gao's avatar
Leo Gao committed
196
    VERSION = 0
Jason Phang's avatar
Jason Phang committed
197
198
199
200
201
202
203
204
205
206

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


Jonathan Tow's avatar
Jonathan Tow committed
207
class QNLI(HFTask):
Leo Gao's avatar
Leo Gao committed
208
    VERSION = 0
sdtblck's avatar
sdtblck committed
209
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
210
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
211
212
213
214
215
216
217
218

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
219
        return False
Jason Phang's avatar
Jason Phang committed
220

Jonathan Tow's avatar
Jonathan Tow committed
221
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
222
        return "{}\n{}\nQuestion: Does this response answer the question?\nAnswer:".format(
Jonathan Tow's avatar
Jonathan Tow committed
223
224
225
226
227
228
229
            doc["question"],
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = not entailment
Leo Gao's avatar
Fix  
Leo Gao committed
230
        return " {}".format({0: "yes", 1: "no"}[doc["label"]])
Jonathan Tow's avatar
Jonathan Tow committed
231
232

    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
233
234
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        pred = ll_no > ll_yes
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }


class WNLI(HFTask):
thomasw21's avatar
thomasw21 committed
257
    VERSION = 1
Jonathan Tow's avatar
Jonathan Tow committed
258
259
260
261
262
263
264
265
266
267
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
268
        return False
Jason Phang's avatar
Jason Phang committed
269

270
    def doc_to_text(self, doc):
thomasw21's avatar
thomasw21 committed
271
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
272
273
274
            doc["sentence1"],
            doc["sentence2"],
        )
275
276

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
277
        # True = entailment
thomasw21's avatar
thomasw21 committed
278
279
        # False = not_entailment
        return " {}".format({0: "False", 1: "True"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
280

Jonathan Tow's avatar
Jonathan Tow committed
281
282
283
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
thomasw21's avatar
thomasw21 committed
284
        return ll_true, ll_false
Jonathan Tow's avatar
Jonathan Tow committed
285
286

    def process_results(self, doc, results):
thomasw21's avatar
thomasw21 committed
287
288
        ll_true, ll_false = results
        pred = ll_true > ll_false
Jonathan Tow's avatar
Jonathan Tow committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
303

Jason Phang's avatar
Jason Phang committed
304

sdtblck's avatar
sdtblck committed
305
class RTE(HFTask):
Leo Gao's avatar
Leo Gao committed
306
    VERSION = 0
sdtblck's avatar
sdtblck committed
307
308
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
309
310
311
312
313
314
315
316

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
317
        return False
Jason Phang's avatar
checkin  
Jason Phang committed
318

319
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
320
        return "{}\nQuestion: {} True or False?\nAnswer:".format(
Jason Phang's avatar
checkin  
Jason Phang committed
321
322
323
            doc["sentence1"],
            doc["sentence2"],
        )
324
325
326
327
328

    def doc_to_target(self, doc):
        # 0 = entailment
        # 1 = not_entailment
        return " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
329

Jonathan Tow's avatar
Jonathan Tow committed
330
331
332
333
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
334

Jonathan Tow's avatar
Jonathan Tow committed
335
336
337
338
339
340
341
342
343
344
345
346
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_false > ll_true
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }
Jason Phang's avatar
Jason Phang committed
347

Jonathan Tow's avatar
Jonathan Tow committed
348
349
350
351
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
352

Jonathan Tow's avatar
Jonathan Tow committed
353
354
355
356
357

# Similarity and Paraphrase Tasks


class MRPC(HFTask):
Leo Gao's avatar
Leo Gao committed
358
    VERSION = 0
sdtblck's avatar
sdtblck committed
359
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
360
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
361
362
363
364
365
366
367
368

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
369
        return False
Jason Phang's avatar
Jason Phang committed
370

371
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
372
373
374
        return "Sentence 1: {}\nSentence 2: {}\nQuestion: Do both sentences mean the same thing?\nAnswer:".format(
            general_detokenize(doc["sentence1"]),
            general_detokenize(doc["sentence2"]),
Jason Phang's avatar
Jason Phang committed
375
        )
376
377

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
378
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
379

Jonathan Tow's avatar
Jonathan Tow committed
380
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Fix  
Leo Gao committed
381
382
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
Jonathan Tow's avatar
Jonathan Tow committed
383
        return ll_yes, ll_no
384

Jonathan Tow's avatar
Jonathan Tow committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
405
406


sdtblck's avatar
sdtblck committed
407
class QQP(HFTask):
Leo Gao's avatar
Leo Gao committed
408
    VERSION = 0
sdtblck's avatar
sdtblck committed
409
410
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
411
412
413
414
415
416
417
418

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
Leo Gao's avatar
Leo Gao committed
419
        return False
Jason Phang's avatar
Jason Phang committed
420

421
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
422
        return "Question 1: {}\nQuestion 2: {}\nQuestion: Do both questions ask the same thing?\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
423
424
425
            doc["question1"],
            doc["question2"],
        )
426
427
428

    def doc_to_target(self, doc):
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
429

Jonathan Tow's avatar
Jonathan Tow committed
430
431
432
433
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
434

Jonathan Tow's avatar
Jonathan Tow committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
455
456


sdtblck's avatar
sdtblck committed
457
class STSB(HFTask):
Leo Gao's avatar
Leo Gao committed
458
    VERSION = 0
sdtblck's avatar
sdtblck committed
459
460
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
461
462
463
464
465
466
467
468
469
470

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

471
    def doc_to_text(self, doc):
Leo Gao's avatar
Leo Gao committed
472
        return "sentence 1: {}\nsentence 2: {}\nAnswer:".format(
Jason Phang's avatar
Jason Phang committed
473
474
475
            doc["sentence1"],
            doc["sentence2"],
        )
476
477
478

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
479

Leo Gao's avatar
Leo Gao committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')