vllm_causallms.py 31.3 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

3
import copy
4
import gc
Lintang Sutawika's avatar
Lintang Sutawika committed
5
import logging
6
import os
Baber Abbasi's avatar
Baber Abbasi committed
7
from importlib.metadata import version
8
from importlib.util import find_spec
9
10
11
from multiprocessing import Process, Queue
from queue import Empty
from time import sleep
Baber's avatar
Baber committed
12
from typing import TYPE_CHECKING, Literal
13

14
import jinja2
15
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
16
from packaging.version import parse as parse_version
17
18
from tqdm import tqdm

baberabb's avatar
baberabb committed
19
from lm_eval.api.instance import Instance
20
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
21
from lm_eval.api.registry import register_model
22
23
from lm_eval.models.utils import (
    Collator,
Baber's avatar
Baber committed
24
    bos_already_added,
25
26
    configure_pad_token,
    handle_stop_sequences,
27
    postprocess_generated_text,
28
29
    undistribute,
)
30
31
32
33
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)
34

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
35

36
try:
37
    import ray
38
    from vllm import LLM, SamplingParams, TokensPrompt
39
    from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
40
    from vllm.transformers_utils.tokenizer import get_tokenizer
41
    from vllm.utils import get_open_port
42
43
44

    if parse_version(version("vllm")) >= parse_version("0.8.3"):
        from vllm.entrypoints.chat_utils import resolve_hf_chat_template
45
46
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
47

48
49
if TYPE_CHECKING:
    pass
bcicc's avatar
bcicc committed
50

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
baberabb's avatar
baberabb committed
52

baberabb's avatar
baberabb committed
53

54
55
def _vllm_mp_worker(
    model_args: dict,
Baber's avatar
Baber committed
56
    sampling_params: list[SamplingParams],
57
    requests: list[list[int]],
Baber's avatar
Baber committed
58
59
    lora_request: LoRARequest,
    result_queue: Queue,
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    dp_size: int,
    local_dp_rank: int,
    dp_master_port: int,
    dp_master_ip: str = "127.0.0.1",
) -> None:
    """
    Worker process for vLLM multiprocessing.
    Initializes a vLLM engine, processes requests, and puts results or errors
    onto the result_queue.
    """

    if not requests:
        result_queue.put((local_dp_rank, []))
        return None

    os.environ["VLLM_DP_RANK"] = os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = str(dp_master_ip)
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)

    llm = None
    try:
        llm = LLM(**model_args)
        res = llm.generate(
84
            [TokensPrompt(prompt_token_ids=request) for request in requests],
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            sampling_params=sampling_params,
            lora_request=lora_request,
        )
        # Give engines time to pause their processing loops before exiting."
        sleep(1)
        result_queue.put((local_dp_rank, res))

    except Exception as e:
        error_message = f"Worker {local_dp_rank} failed during generation: {type(e).__name__}: {str(e)}"
        eval_logger.error(error_message, exc_info=True)
        result_queue.put((local_dp_rank, {"error": error_message}))

    finally:
        if llm is not None:
            try:
                del llm
                gc.collect()
            except Exception as e_cleanup:
                eval_logger.warning(
                    f"Worker {local_dp_rank} encountered an error during LLM cleanup: {type(e_cleanup).__name__}: {str(e_cleanup)}",
                    exc_info=True,
                )

    return None


baberabb's avatar
baberabb committed
111
@register_model("vllm")
112
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
113
114
115
116
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
117
        pretrained: str,
baberabb's avatar
baberabb committed
118
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
Baber's avatar
Baber committed
119
120
121
        revision: str | None = None,
        trust_remote_code: bool | None = False,
        tokenizer: str | None = None,
baberabb's avatar
baberabb committed
122
        tokenizer_mode: Literal["auto", "slow"] = "auto",
Baber's avatar
Baber committed
123
124
125
        tokenizer_revision: str | None = None,
        add_bos_token: bool | None = False,
        prefix_token_id: int | None = None,
baberabb's avatar
baberabb committed
126
        tensor_parallel_size: int = 1,
Baber's avatar
Baber committed
127
        quantization: str | None = None,
baberabb's avatar
baberabb committed
128
129
        max_gen_toks: int = 256,
        swap_space: int = 4,
Baber's avatar
Baber committed
130
        batch_size: str | int = 1,
baberabb's avatar
baberabb committed
131
        max_batch_size=None,
baberabb's avatar
baberabb committed
132
        max_length: int = None,
133
        max_model_len: int = None,
baberabb's avatar
baberabb committed
134
        seed: int = 1234,
135
        gpu_memory_utilization: float = 0.9,
136
        data_parallel_size: int = 1,
bcicc's avatar
bcicc committed
137
        lora_local_path: str = None,
138
139
        # VLLM: enable thinking tags in the prompt.
        enable_thinking: bool = True,
Baber's avatar
Baber committed
140
        chat_template_args: dict | None = None,
141
        # End marker for thinking tags - splits to get response after this token (if provided).
Baber's avatar
Baber committed
142
        think_end_token: str | None = None,
MaYongQing's avatar
MaYongQing committed
143
        max_lora_rank: int = 16,
Baber Abbasi's avatar
Baber Abbasi committed
144
        **kwargs,
baberabb's avatar
baberabb committed
145
146
    ):
        super().__init__()
147

148
        if not find_spec("vllm"):
149
            raise ModuleNotFoundError(
150
151
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
152
153
            )

Baber Abbasi's avatar
Baber Abbasi committed
154
155
156
        assert max_length is None or max_model_len is None, (
            "Either max_length or max_model_len may be provided, but not both"
        )
Baber Abbasi's avatar
Baber Abbasi committed
157
        kwargs.pop("device", None)
158
        self.think_end_token = think_end_token
159
        self.V1 = os.environ.get("VLLM_USE_V1", "1") != "0"
160
        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
161
        self.tensor_parallel_size = int(tensor_parallel_size)
162
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
163
164
165
166
167
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
168
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
169
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
170
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
171
172
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
173
            "max_model_len": int(self._max_length) if self._max_length else None,
174
            "max_num_seqs": kwargs.get("max_num_seqs", max_batch_size),
baberabb's avatar
baberabb committed
175
176
177
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
MaYongQing's avatar
MaYongQing committed
178
179
            "enable_lora": True if lora_local_path else False,
            "max_lora_rank": int(max_lora_rank),
baberabb's avatar
baberabb committed
180
        }
Baber Abbasi's avatar
Baber Abbasi committed
181
        self.model_args.update(kwargs)
182
183
184
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
185
            else int(batch_size)
186
        )
187
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
188
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
189
        else:
Baber Abbasi's avatar
Baber Abbasi committed
190
191
192
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
193
194
195
196
197
            self.model_args["distributed_executor_backend"] = (
                "ray"
                if not self.V1
                else self.model_args.get("distributed_executor_backend", None)
            )
198
199
200
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

Baber's avatar
Baber committed
201
        self.add_bos_token = add_bos_token
202

203
        from transformers import AutoConfig
204

205
206
207
        self._config = AutoConfig.from_pretrained(
            pretrained, trust_remote_code=trust_remote_code, revision=revision
        )
baberabb's avatar
nits  
baberabb committed
208
209
210
211
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
212
            revision=tokenizer_revision,
Baber's avatar
Baber committed
213
214
215
216
217
            **(
                {"add_bos_token": self.add_bos_token}
                if self.add_bos_token is not None
                else {}
            ),
baberabb's avatar
nits  
baberabb committed
218
        )
219
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self._config)
220
        self.chat_template_args = chat_template_args or {}
221
        self.enable_thinking = self.chat_template_args.pop(
222
223
            "enable_thinking", enable_thinking
        )
224

225
        if parse_version(version("vllm")) >= parse_version("0.8.3"):
226
227
228
229
230
231
232
            kwargs_resolve_hf_chat_template = {
                "tokenizer": self.tokenizer,
                "chat_template": None,
                "tools": None,
            }

            if parse_version(version("vllm")) >= parse_version("0.9.0"):
233
234
235
236
237
238
239
240
241
242
243
                if self.data_parallel_size <= 1:
                    kwargs_resolve_hf_chat_template["model_config"] = (
                        self.model.llm_engine.model_config
                    )
                else:
                    from vllm.engine.arg_utils import EngineArgs

                    engine_args = EngineArgs(**self.model_args)
                    model_config = engine_args.create_model_config()

                    kwargs_resolve_hf_chat_template["model_config"] = model_config
244
245
246
            else:
                kwargs_resolve_hf_chat_template["trust_remote_code"] = trust_remote_code

247
            self.hf_chat_template = resolve_hf_chat_template(
248
                **kwargs_resolve_hf_chat_template
249
250
251
            )
        else:
            self.hf_chat_template = None
252

253
254
255
256
257
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
258

baberabb's avatar
baberabb committed
259
260
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
261
        if lora_local_path is not None:
Baber Abbasi's avatar
Baber Abbasi committed
262
263
264
            assert parse_version(version("vllm")) > parse_version("0.3.0"), (
                "lora adapters only compatible with vllm > v0.3.0."
            )
bcicc's avatar
bcicc committed
265
266
267
268
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
269
    @property
Baber's avatar
Baber committed
270
    def eot_token_id(self) -> int | None:
baberabb's avatar
baberabb committed
271
272
273
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

274
275
276
277
278
279
280
281
282
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
283
284
285
286
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
287
288
289
290
291
292
293
294
295
296
297
298
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
299
300
301
302
303

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

Baber Abbasi's avatar
Baber Abbasi committed
304
    def apply_chat_template(
Baber's avatar
Baber committed
305
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
Baber Abbasi's avatar
Baber Abbasi committed
306
    ) -> str:
307
308
309
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
310
311
312
313
314
315
316
317
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
318
                **self.chat_template_args,
319
320
321
322
323
324
325
326
327
328
329
330
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_templated = self.tokenizer.apply_chat_template(
                [msg for msg in chat_history if msg["role"] != "system"],
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
331
                **self.chat_template_args,
332
            )
333

Baber Abbasi's avatar
Baber Abbasi committed
334
335
        return chat_templated

336
337
338
339
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

baberabb's avatar
baberabb committed
340
341
    def tok_encode(
        self,
Baber's avatar
Baber committed
342
343
344
        string: str | list[str],
        left_truncate_len: int | None = None,
        add_special_tokens: bool | None = None,
345
        truncation: bool = False,
Baber's avatar
Baber committed
346
347
348
349
350
351
352
    ) -> list[int] | list[list[int]]:
        add_special_kwargs = (
            {"add_special_tokens": add_special_tokens or self.add_bos_token}
            if (add_special_tokens is not None or self.add_bos_token is not None)
            else {}
        )
        # handle chat template
Baber's avatar
Baber committed
353
354
355
        if bos_already_added(
            string[0] if isinstance(string, list) else string, self.tokenizer.bos_token
        ):
Baber's avatar
Baber committed
356
            add_special_kwargs = {"add_special_tokens": False}
Baber's avatar
Baber committed
357

Baber's avatar
Baber committed
358
        encoding: list[list[int]] | list[int] = self.tokenizer(
359
360
361
            string,
            truncation=truncation,
            return_attention_mask=False,
Baber's avatar
Baber committed
362
            **add_special_kwargs,
363
        ).input_ids
baberabb's avatar
baberabb committed
364
365
366

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
367
368
369
370
            if not isinstance(string, str):
                encoding = [enc[-left_truncate_len:] for enc in encoding]
            else:
                encoding = encoding[-left_truncate_len:]
baberabb's avatar
baberabb committed
371
372
373
374
375

        return encoding

    def _model_generate(
        self,
Baber's avatar
Baber committed
376
        requests: list[list[int]],
baberabb's avatar
baberabb committed
377
        generate: bool = False,
Baber's avatar
Baber committed
378
        sampling_params: list[SamplingParams] | SamplingParams | None = None,
baberabb's avatar
baberabb committed
379
    ):
380
        if not generate or sampling_params is None:
baberabb's avatar
baberabb committed
381
            sampling_params = SamplingParams(
382
                temperature=0, prompt_logprobs=1, max_tokens=1, detokenize=False
baberabb's avatar
baberabb committed
383
            )
Baber's avatar
Baber committed
384
        if not isinstance(sampling_params, list):
385
            sampling_params = [sampling_params] * len(requests)
386
        if self.data_parallel_size > 1 and not self.V1:
Baber Abbasi's avatar
Baber Abbasi committed
387
            # vLLM hangs if resources are set in ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
388
389
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
Baber Abbasi's avatar
Baber Abbasi committed
390
            @ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
391
            def run_inference_one_model(
392
                model_args: dict,
Baber's avatar
Baber committed
393
394
395
                sampling_params: list[SamplingParams],
                requests: list[list[int]],
                lora_request: LoRARequest,
Baber Abbasi's avatar
Baber Abbasi committed
396
397
398
            ):
                llm = LLM(**model_args)
                return llm.generate(
399
                    [TokensPrompt(prompt_token_ids=request) for request in requests],
400
401
                    sampling_params=sampling_params,
                    lora_request=lora_request,
Baber Abbasi's avatar
Baber Abbasi committed
402
403
                )

404
405
406
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
407
408
409
            sampling_params = [
                list(sp) for sp in distribute(self.data_parallel_size, sampling_params)
            ]
410
            inputs = (
411
412
                (self.model_args, sp, req, self.lora_request)
                for req, sp in zip(requests, sampling_params)
413
            )
Baber Abbasi's avatar
Baber Abbasi committed
414
415
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
416
417
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
418
            # flatten results
419
            return undistribute(results)
420
421
422
423
424
425
426
        elif self.data_parallel_size > 1:
            # based on https://github.com/vllm-project/vllm/blob/a04720bc36401d831cb048c3917b9e58173d9c1d/examples/offline_inference/data_parallel.py
            dp_size = self.data_parallel_size
            dp_master_ip = os.environ.get("VLLM_DP_MASTER_IP", "127.0.0.1")
            dp_master_port = os.environ.get("VLLM_DP_MASTER_PORT") or get_open_port()

            requests = (list(x) for x in distribute(self.data_parallel_size, requests))
427
428
429
            sampling_params = (
                list(sp) for sp in distribute(self.data_parallel_size, sampling_params)
            )
430
431
432
            procs, resq = [], Queue()
            # We use Process as it is non-daemonic
            try:
Vineeth's avatar
Vineeth committed
433
                for rank, (req, sp) in enumerate(zip(requests, sampling_params)):
434
435
436
437
                    proc = Process(
                        target=_vllm_mp_worker,
                        args=(
                            self.model_args.copy(),
438
                            sp,
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                            req,
                            self.lora_request,
                            resq,
                            dp_size,
                            rank,
                            dp_master_port,
                            dp_master_ip,
                        ),
                    )
                    proc.start()
                    procs.append(proc)

                # Collect results
                rank_res = {}
                while len(rank_res) < len(procs):
                    try:
                        rank, result = resq.get(timeout=30)
                        if isinstance(result, dict) and "error" in result:
                            raise RuntimeError(result["error"])
                        rank_res[rank] = result
                    except Empty:
                        dead_procs = [
                            idx
                            for idx, p in enumerate(procs)
                            if not p.is_alive() and idx not in rank_res
                        ]
                        if dead_procs:
                            raise RuntimeError(
                                f"Worker processes {dead_procs} died unexpectedly"
                            )
                        continue

                results = [rank_res[i] for i in range(len(procs))]
                return undistribute(results)

            # cleanup
            finally:
                try:
                    resq.close()
                    resq.join_thread()
                except Exception:
                    eval_logger.debug(
                        "Failed to close vllm DP results queue", exc_info=True
                    )
                for proc in procs:
                    proc.join(timeout=10)
                    if proc.is_alive():
                        proc.terminate()
                        proc.join(timeout=5)
                        if proc.is_alive():
                            proc.kill()
baberabb's avatar
baberabb committed
490

491
492
        else:
            outputs = self.model.generate(
493
                [TokensPrompt(prompt_token_ids=request) for request in requests],
494
495
496
497
498
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
                lora_request=self.lora_request,
            )
            return outputs
baberabb's avatar
baberabb committed
499

500
    def loglikelihood_rolling(
Baber's avatar
Baber committed
501
502
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        adaptive_batch_size = None
        if self.batch_size == "auto":
            adaptive_batch_size = len(requests)

        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
        ):
Baber's avatar
Baber committed
517
            rolling_token_windows: list[tuple[list[int], list[int]]] = list(
baberabb's avatar
baberabb committed
518
                map(
519
520
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
521
                        token_list=self.tok_encode(string),
522
523
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
baberabb's avatar
baberabb committed
524
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
525
526
527
528
529
                        context_len=1,
                    ),
                )
            )

530
531
            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            windows = [(None,) + x for x in rolling_token_windows]
baberabb's avatar
baberabb committed
532

533
534
535
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
baberabb's avatar
baberabb committed
536

537
538
539
540
541
542
        all_nlls = []
        batch_size = adaptive_batch_size or int(self.batch_size)
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)
baberabb's avatar
baberabb committed
543

544
545
546
547
548
549
            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
            )
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
566

baberabb's avatar
baberabb committed
567
568
        return loglikelihoods

569
    def generate_until(
Baber's avatar
Baber committed
570
571
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
572
        res = []
baberabb's avatar
baberabb committed
573
574
575

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
Baber's avatar
Baber committed
576
577
        context_encoding = self.tok_encode(context)
        reqs = [
baberabb's avatar
baberabb committed
578
579
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
580
581
582
583
584
585
586
587

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
588
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
589

590
        re_ords = Collator(
Baber's avatar
Baber committed
591
            reqs,
592
593
594
            _collate_gen,
            group_by=None,
        )
595
596
597
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
598

599
        pbar = tqdm(
Baber's avatar
Baber committed
600
            total=len(reqs),
601
            disable=(disable_tqdm or (self.rank != 0)),
602
603
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
604
        # for each different set of kwargs, we execute all requests, by batch.
605
        eos = self.tokenizer.decode(self.eot_token_id)
606
607
608
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            context_encoding_truncated = []
            sampling_params = []
            for x, gen_kwargs in zip(context_encoding, all_gen_kwargs):
                # unpack our keyword arguments.
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    # add EOS token to stop sequences
                    until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
                else:
                    raise ValueError(
                        f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
                    )
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks

                # set the max length in tokens of inputs ("context_enc")
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
                if len(x) > max_ctx_len:
630
                    eval_logger.warning(
631
                        f"Context length {len(x)} exceeds max length (context + max gen tokens): {max_ctx_len}. Truncating context."
632
                    )
633
634
635
636
637
638
639
640
                    context_encoding_truncated.append(x[-max_ctx_len:])
                else:
                    context_encoding_truncated.append(x)
                # create sampling params
                kwargs = self.modify_gen_kwargs(kwargs)
                sampling_params.append(
                    SamplingParams(max_tokens=max_gen_toks, stop=until, **kwargs)
                )
641
642
643

            # perform batched generation
            cont = self._model_generate(
644
                requests=context_encoding_truncated,
645
                generate=True,
646
                sampling_params=sampling_params,
647
            )
baberabb's avatar
baberabb committed
648

649
650
            # cache generations
            for output, context in zip(cont, context):
651
                generated_text: str = output.outputs[0].text
652
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
653
654
655
                generated_text = postprocess_generated_text(
                    generated_text, until, self.think_end_token
                )
656
657
658
659
660
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
661
662

        pbar.close()
663
664
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
665
666

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
667
        self,
Baber's avatar
Baber committed
668
        requests: list[tuple[tuple[str, str], list[int], list[int]]],
baberabb's avatar
baberabb committed
669
        disable_tqdm: bool = False,
Baber's avatar
Baber committed
670
    ) -> list[tuple[float, bool]]:
baberabb's avatar
baberabb committed
671
672
673
674
675
676
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

677
678
679
680
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
681
        )
682

683
684
685
686
687
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
688
        for chunk in chunks:
689
            inputs = []
baberabb's avatar
baberabb committed
690
691
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
692
693
                if (
                    full_length := len(context_enc + continuation_enc)
694
                ) > self.max_length:
695
696
697
                    eval_logger.warning(
                        f"Context length {full_length} exceeds max length ({self.max_length}). Truncating context."
                    )
baberabb's avatar
baberabb committed
698
699
700
701
702
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

703
                inputs.append(inp)
baberabb's avatar
baberabb committed
704
705
                ctxlens.append(ctxlen)

706
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
707

708
709
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
710
711
            ):
                answer = self._parse_logprobs(
712
713
714
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
715
716
717
718
719
                )

                res.append(answer)

                if cache_key is not None:
720
721
722
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
baberabb's avatar
baberabb committed
723
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
724
                pbar.update(1)
baberabb's avatar
baberabb committed
725
726
727
728
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
Baber's avatar
Baber committed
729
    def _parse_logprobs(tokens: list, outputs, ctxlen: int) -> tuple[float, bool]:
baberabb's avatar
baberabb committed
730
731
732
        """Process logprobs and tokens.

        :param tokens: list
733
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
734
        :param outputs: RequestOutput
735
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
736
737
738
739
740
741
742
743
744
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

745
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
746
747
        continuation_logprobs_dicts = outputs.prompt_logprobs

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
768
        # Calculate continuation_logprobs
769
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
770
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
771
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
772
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
773
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
774
775
776
777
778
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
779
780
781
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
782
783
784
785
786
787
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
788
789

        return continuation_logprobs, is_greedy
790
791
792
793

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
794
        kwargs["temperature"] = kwargs.get("temperature", 0.0)
795
        do_sample = kwargs.pop("do_sample", None)
796
797
798
799
        if do_sample is False and "temperature" not in kwargs:
            eval_logger.debug(
                "Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ..."
            )
800
801
802
803
804
805
806
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs