vllm_causallms.py 30.8 KB
Newer Older
1
import copy
2
import gc
Lintang Sutawika's avatar
Lintang Sutawika committed
3
import logging
4
import os
Baber Abbasi's avatar
Baber Abbasi committed
5
from importlib.metadata import version
6
from importlib.util import find_spec
7
8
9
from multiprocessing import Process, Queue
from queue import Empty
from time import sleep
10
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union
11

12
import jinja2
13
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
14
from packaging.version import parse as parse_version
15
16
from tqdm import tqdm

baberabb's avatar
baberabb committed
17
from lm_eval.api.instance import Instance
18
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
19
from lm_eval.api.registry import register_model
20
21
22
23
from lm_eval.models.utils import (
    Collator,
    configure_pad_token,
    handle_stop_sequences,
24
    postprocess_generated_text,
25
26
    undistribute,
)
27
28
29
30
from lm_eval.utils import (
    get_rolling_token_windows,
    make_disjoint_window,
)
31

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
32

33
try:
34
    import ray
35
    from vllm import LLM, SamplingParams, TokensPrompt
36
    from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
37
    from vllm.transformers_utils.tokenizer import get_tokenizer
38
    from vllm.utils import get_open_port
39
40
41

    if parse_version(version("vllm")) >= parse_version("0.8.3"):
        from vllm.entrypoints.chat_utils import resolve_hf_chat_template
42
43
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
44

45
46
if TYPE_CHECKING:
    pass
bcicc's avatar
bcicc committed
47

Lintang Sutawika's avatar
Lintang Sutawika committed
48
eval_logger = logging.getLogger(__name__)
baberabb's avatar
baberabb committed
49

baberabb's avatar
baberabb committed
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def _vllm_mp_worker(
    model_args: dict,
    sampling_params: "SamplingParams",
    requests: list[list[int]],
    lora_request: "LoRARequest",
    result_queue: "Queue",
    dp_size: int,
    local_dp_rank: int,
    dp_master_port: int,
    dp_master_ip: str = "127.0.0.1",
) -> None:
    """
    Worker process for vLLM multiprocessing.
    Initializes a vLLM engine, processes requests, and puts results or errors
    onto the result_queue.
    """

    if not requests:
        result_queue.put((local_dp_rank, []))
        return None

    os.environ["VLLM_DP_RANK"] = os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = str(dp_master_ip)
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)

    llm = None
    try:
        llm = LLM(**model_args)
        res = llm.generate(
81
            [TokensPrompt(prompt_token_ids=request) for request in requests],
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            sampling_params=sampling_params,
            lora_request=lora_request,
        )
        # Give engines time to pause their processing loops before exiting."
        sleep(1)
        result_queue.put((local_dp_rank, res))

    except Exception as e:
        error_message = f"Worker {local_dp_rank} failed during generation: {type(e).__name__}: {str(e)}"
        eval_logger.error(error_message, exc_info=True)
        result_queue.put((local_dp_rank, {"error": error_message}))

    finally:
        if llm is not None:
            try:
                del llm
                gc.collect()
            except Exception as e_cleanup:
                eval_logger.warning(
                    f"Worker {local_dp_rank} encountered an error during LLM cleanup: {type(e_cleanup).__name__}: {str(e_cleanup)}",
                    exc_info=True,
                )

    return None


baberabb's avatar
baberabb committed
108
@register_model("vllm")
109
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
110
111
112
113
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
114
        pretrained: str,
baberabb's avatar
baberabb committed
115
116
117
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
118
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
119
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
120
        tokenizer_revision: Optional[str] = None,
121
        add_bos_token: Optional[bool] = False,
122
        prefix_token_id: Optional[int] = None,
baberabb's avatar
baberabb committed
123
        tensor_parallel_size: int = 1,
124
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
125
126
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
127
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
128
        max_batch_size=None,
baberabb's avatar
baberabb committed
129
        max_length: int = None,
130
        max_model_len: int = None,
baberabb's avatar
baberabb committed
131
        seed: int = 1234,
132
        gpu_memory_utilization: float = 0.9,
133
        data_parallel_size: int = 1,
bcicc's avatar
bcicc committed
134
        lora_local_path: str = None,
135
136
        # VLLM: enable thinking tags in the prompt.
        enable_thinking: bool = True,
137
        chat_template_args: Optional[dict] = None,
138
139
        # End marker for thinking tags - splits to get response after this token (if provided).
        think_end_token: Optional[str] = None,
MaYongQing's avatar
MaYongQing committed
140
        max_lora_rank: int = 16,
Baber Abbasi's avatar
Baber Abbasi committed
141
        **kwargs,
baberabb's avatar
baberabb committed
142
143
    ):
        super().__init__()
144

145
        if not find_spec("vllm"):
146
            raise ModuleNotFoundError(
147
148
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
149
150
            )

Baber Abbasi's avatar
Baber Abbasi committed
151
152
153
        assert max_length is None or max_model_len is None, (
            "Either max_length or max_model_len may be provided, but not both"
        )
Baber Abbasi's avatar
Baber Abbasi committed
154
        kwargs.pop("device", None)
155
        self.think_end_token = think_end_token
156
        self.V1 = os.environ.get("VLLM_USE_V1", "1") != "0"
157
        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
158
        self.tensor_parallel_size = int(tensor_parallel_size)
159
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
160
161
162
163
164
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
165
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
166
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
167
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
168
169
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
170
            "max_model_len": int(self._max_length) if self._max_length else None,
171
            "max_num_seqs": kwargs.get("max_num_seqs", max_batch_size),
baberabb's avatar
baberabb committed
172
173
174
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
MaYongQing's avatar
MaYongQing committed
175
176
            "enable_lora": True if lora_local_path else False,
            "max_lora_rank": int(max_lora_rank),
baberabb's avatar
baberabb committed
177
        }
Baber Abbasi's avatar
Baber Abbasi committed
178
        self.model_args.update(kwargs)
179
180
181
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
182
            else int(batch_size)
183
        )
184
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
185
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
186
        else:
Baber Abbasi's avatar
Baber Abbasi committed
187
188
189
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
190
191
192
193
194
            self.model_args["distributed_executor_backend"] = (
                "ray"
                if not self.V1
                else self.model_args.get("distributed_executor_backend", None)
            )
195
196
197
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

198
        from transformers import AutoConfig
199

200
201
202
        self._config = AutoConfig.from_pretrained(
            pretrained, trust_remote_code=trust_remote_code, revision=revision
        )
baberabb's avatar
nits  
baberabb committed
203
204
205
206
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
207
            revision=tokenizer_revision,
208
            add_bos_token=add_bos_token,
baberabb's avatar
nits  
baberabb committed
209
        )
210
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self._config)
211
        self.chat_template_args = chat_template_args or {}
212
        self.enable_thinking = self.chat_template_args.pop(
213
214
            "enable_thinking", enable_thinking
        )
215
        self.add_bos_token = add_bos_token
216
217
218
        if "gemma" in pretrained.lower():
            self.add_bos_token = True
            eval_logger.info(
219
                "Found 'gemma' in model name, a BOS token will be used as Gemma series models underperform without it."
220
221
            )

222
        if parse_version(version("vllm")) >= parse_version("0.8.3"):
223
224
225
226
227
228
229
            kwargs_resolve_hf_chat_template = {
                "tokenizer": self.tokenizer,
                "chat_template": None,
                "tools": None,
            }

            if parse_version(version("vllm")) >= parse_version("0.9.0"):
230
231
232
233
234
235
236
237
238
239
240
                if self.data_parallel_size <= 1:
                    kwargs_resolve_hf_chat_template["model_config"] = (
                        self.model.llm_engine.model_config
                    )
                else:
                    from vllm.engine.arg_utils import EngineArgs

                    engine_args = EngineArgs(**self.model_args)
                    model_config = engine_args.create_model_config()

                    kwargs_resolve_hf_chat_template["model_config"] = model_config
241
242
243
            else:
                kwargs_resolve_hf_chat_template["trust_remote_code"] = trust_remote_code

244
            self.hf_chat_template = resolve_hf_chat_template(
245
                **kwargs_resolve_hf_chat_template
246
247
248
            )
        else:
            self.hf_chat_template = None
249

250
251
252
253
254
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
255

baberabb's avatar
baberabb committed
256
257
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
258
        if lora_local_path is not None:
Baber Abbasi's avatar
Baber Abbasi committed
259
260
261
            assert parse_version(version("vllm")) > parse_version("0.3.0"), (
                "lora adapters only compatible with vllm > v0.3.0."
            )
bcicc's avatar
bcicc committed
262
263
264
265
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
266
267
268
269
270
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

271
272
273
274
275
276
277
278
279
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
280
281
282
283
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
284
285
286
287
288
289
290
291
292
293
294
295
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
296
297
298
299
300

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

Baber Abbasi's avatar
Baber Abbasi committed
301
302
303
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
304
305
306
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
307
308
309
310
311
312
313
314
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
315
                **self.chat_template_args,
316
317
318
319
320
321
322
323
324
325
326
327
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_templated = self.tokenizer.apply_chat_template(
                [msg for msg in chat_history if msg["role"] != "system"],
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
                chat_template=self.hf_chat_template,
                enable_thinking=self.enable_thinking,
328
                **self.chat_template_args,
329
            )
330

Baber Abbasi's avatar
Baber Abbasi committed
331
332
        return chat_templated

333
334
335
336
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

baberabb's avatar
baberabb committed
337
338
    def tok_encode(
        self,
339
340
341
342
343
        string: Union[str, List[str]],
        left_truncate_len: int = None,
        add_special_tokens: bool = False,
        truncation: bool = False,
    ) -> Union[List[int], List[List[int]]]:
344
345
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
346
347
348
349
350
351
        encoding: Union[List[List[int]], List[int]] = self.tokenizer(
            string,
            add_special_tokens=add_special_tokens,
            truncation=truncation,
            return_attention_mask=False,
        ).input_ids
baberabb's avatar
baberabb committed
352
353
354

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
355
356
357
358
            if not isinstance(string, str):
                encoding = [enc[-left_truncate_len:] for enc in encoding]
            else:
                encoding = encoding[-left_truncate_len:]
baberabb's avatar
baberabb committed
359
360
361
362
363

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
364
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
365
366
367
368
369
370
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
371
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
372
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
373
        else:
baberabb's avatar
baberabb committed
374
            sampling_params = SamplingParams(
375
                temperature=0, prompt_logprobs=1, max_tokens=1, detokenize=False
baberabb's avatar
baberabb committed
376
            )
377
        if self.data_parallel_size > 1 and not self.V1:
Baber Abbasi's avatar
Baber Abbasi committed
378
            # vLLM hangs if resources are set in ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
379
380
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
Baber Abbasi's avatar
Baber Abbasi committed
381
            @ray.remote
Baber Abbasi's avatar
Baber Abbasi committed
382
            def run_inference_one_model(
383
                model_args: dict,
Baber Abbasi's avatar
Baber Abbasi committed
384
                sampling_params: SamplingParams,
385
386
                requests: List[List[int]],
                lora_request: LoRARequest,
Baber Abbasi's avatar
Baber Abbasi committed
387
388
389
            ):
                llm = LLM(**model_args)
                return llm.generate(
390
                    [TokensPrompt(prompt_token_ids=request) for request in requests],
391
392
                    sampling_params=sampling_params,
                    lora_request=lora_request,
Baber Abbasi's avatar
Baber Abbasi committed
393
394
                )

395
396
397
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
398
399
400
401
            inputs = (
                (self.model_args, sampling_params, req, self.lora_request)
                for req in requests
            )
Baber Abbasi's avatar
Baber Abbasi committed
402
403
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
404
405
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
406
            # flatten results
407
            return undistribute(results)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        elif self.data_parallel_size > 1:
            # based on https://github.com/vllm-project/vllm/blob/a04720bc36401d831cb048c3917b9e58173d9c1d/examples/offline_inference/data_parallel.py
            dp_size = self.data_parallel_size
            dp_master_ip = os.environ.get("VLLM_DP_MASTER_IP", "127.0.0.1")
            dp_master_port = os.environ.get("VLLM_DP_MASTER_PORT") or get_open_port()

            requests = (list(x) for x in distribute(self.data_parallel_size, requests))

            procs, resq = [], Queue()
            # We use Process as it is non-daemonic
            try:
                for rank, req in enumerate(requests):
                    proc = Process(
                        target=_vllm_mp_worker,
                        args=(
                            self.model_args.copy(),
                            sampling_params,
                            req,
                            self.lora_request,
                            resq,
                            dp_size,
                            rank,
                            dp_master_port,
                            dp_master_ip,
                        ),
                    )
                    proc.start()
                    procs.append(proc)

                # Collect results
                rank_res = {}
                while len(rank_res) < len(procs):
                    try:
                        rank, result = resq.get(timeout=30)
                        if isinstance(result, dict) and "error" in result:
                            raise RuntimeError(result["error"])
                        rank_res[rank] = result
                    except Empty:
                        dead_procs = [
                            idx
                            for idx, p in enumerate(procs)
                            if not p.is_alive() and idx not in rank_res
                        ]
                        if dead_procs:
                            raise RuntimeError(
                                f"Worker processes {dead_procs} died unexpectedly"
                            )
                        continue

                results = [rank_res[i] for i in range(len(procs))]
                return undistribute(results)

            # cleanup
            finally:
                try:
                    resq.close()
                    resq.join_thread()
                except Exception:
                    eval_logger.debug(
                        "Failed to close vllm DP results queue", exc_info=True
                    )
                for proc in procs:
                    proc.join(timeout=10)
                    if proc.is_alive():
                        proc.terminate()
                        proc.join(timeout=5)
                        if proc.is_alive():
                            proc.kill()
baberabb's avatar
baberabb committed
476

477
478
        else:
            outputs = self.model.generate(
479
                [TokensPrompt(prompt_token_ids=request) for request in requests],
480
481
482
483
484
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
                lora_request=self.lora_request,
            )
            return outputs
baberabb's avatar
baberabb committed
485

486
487
488
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        adaptive_batch_size = None
        if self.batch_size == "auto":
            adaptive_batch_size = len(requests)

        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
        ):
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
baberabb's avatar
baberabb committed
504
                map(
505
506
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
507
                        token_list=self.tok_encode(string),
508
509
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
baberabb's avatar
baberabb committed
510
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
511
512
513
514
515
                        context_len=1,
                    ),
                )
            )

516
517
            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            windows = [(None,) + x for x in rolling_token_windows]
baberabb's avatar
baberabb committed
518

519
520
521
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
baberabb's avatar
baberabb committed
522

523
524
525
526
527
528
        all_nlls = []
        batch_size = adaptive_batch_size or int(self.batch_size)
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)
baberabb's avatar
baberabb committed
529

530
531
532
533
534
535
            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
            )
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
552

baberabb's avatar
baberabb committed
553
554
        return loglikelihoods

555
556
557
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
558
        res = []
baberabb's avatar
baberabb committed
559
560
561

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
562
563
564
        context_encoding: List[List[int]] = self.tok_encode(
            context, add_special_tokens=self.add_bos_token
        )
baberabb's avatar
baberabb committed
565
566
567
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
568
569
570
571
572
573
574
575

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
576
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
577
578
579
580

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
581
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
582
583
584
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
585

586
587
        pbar = tqdm(
            total=len(requests),
588
            disable=(disable_tqdm or (self.rank != 0)),
589
590
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
591
        # for each different set of kwargs, we execute all requests, by batch.
592
        eos = self.tokenizer.decode(self.eot_token_id)
593
594
595
596
597
598
599
600
601
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
602
603
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
604
605
            else:
                raise ValueError(
606
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
baberabb's avatar
baberabb committed
607
                )
608
609
610
611
612
613
614
615
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
616
617
618
619
620
621
            all_lengths = [len(x) for x in context_encoding]
            for length in all_lengths:
                if length > max_ctx_len:
                    eval_logger.warning(
                        f"Context length {length} exceeds max length (context + max gen tokens): {max_ctx_len}. Truncating context."
                    )
622
623
624
625
626
627
628
629
630
631
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
632

633
634
            # cache generations
            for output, context in zip(cont, context):
635
                generated_text: str = output.outputs[0].text
636
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
637
638
639
                generated_text = postprocess_generated_text(
                    generated_text, until, self.think_end_token
                )
640
641
642
643
644
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
645
646

        pbar.close()
647
648
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
649
650

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
651
652
653
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
654
655
656
657
658
659
660
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

661
662
663
664
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
665
        )
666

667
668
669
670
671
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
672
        for chunk in chunks:
673
            inputs = []
baberabb's avatar
baberabb committed
674
675
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
676
677
                if (
                    full_length := len(context_enc + continuation_enc)
678
                ) > self.max_length:
679
680
681
                    eval_logger.warning(
                        f"Context length {full_length} exceeds max length ({self.max_length}). Truncating context."
                    )
baberabb's avatar
baberabb committed
682
683
684
685
686
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

687
                inputs.append(inp)
baberabb's avatar
baberabb committed
688
689
                ctxlens.append(ctxlen)

690
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
691

692
693
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
694
695
            ):
                answer = self._parse_logprobs(
696
697
698
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
699
700
701
702
703
                )

                res.append(answer)

                if cache_key is not None:
704
705
706
                    # special case: loglikelihood_rolling produces a number of loglikelihood requests
                    # all with cache key None. instead do add_partial on the per-example level
                    # in the loglikelihood_rolling() function for those.
baberabb's avatar
baberabb committed
707
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
708
                pbar.update(1)
baberabb's avatar
baberabb committed
709
710
711
712
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
713
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
714
715
716
        """Process logprobs and tokens.

        :param tokens: list
717
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
718
        :param outputs: RequestOutput
719
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
720
721
722
723
724
725
726
727
728
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

729
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
730
731
        continuation_logprobs_dicts = outputs.prompt_logprobs

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
752
        # Calculate continuation_logprobs
753
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
754
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
755
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
756
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
757
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
758
759
760
761
762
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
763
764
765
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
766
767
768
769
770
771
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
772
773

        return continuation_logprobs, is_greedy
774
775
776
777

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
778
        kwargs["temperature"] = kwargs.get("temperature", 0.0)
779
        do_sample = kwargs.pop("do_sample", None)
780
781
782
783
        if do_sample is False and "temperature" not in kwargs:
            eval_logger.debug(
                "Got `do_sample=False` and no temperature value, setting VLLM temperature to 0.0 ..."
            )
784
785
786
787
788
789
790
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs