vllm_causallms.py 19.4 KB
Newer Older
1
import copy
Baber Abbasi's avatar
Baber Abbasi committed
2
from importlib.metadata import version
3
4
5
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple, Union

6
from more_itertools import distribute
Baber Abbasi's avatar
Baber Abbasi committed
7
from packaging.version import parse as parse_version
8
9
from tqdm import tqdm

baberabb's avatar
baberabb committed
10
from lm_eval.api.instance import Instance
11
from lm_eval.api.model import TemplateLM
baberabb's avatar
baberabb committed
12
from lm_eval.api.registry import register_model
13
from lm_eval.models.utils import Collator, undistribute
14
15
16
17
18
from lm_eval.utils import (
    eval_logger,
    get_rolling_token_windows,
    make_disjoint_window,
)
19

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
20

21
try:
22
    import ray
23
    from vllm import LLM, SamplingParams
bcicc's avatar
bcicc committed
24
25
26

    if parse_version(version("vllm")) > parse_version("0.3.0"):
        from vllm.lora.request import LoRARequest
baberabb's avatar
baberabb committed
27
    from vllm.transformers_utils.tokenizer import get_tokenizer
28
29
except ModuleNotFoundError:
    pass
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
30

bcicc's avatar
bcicc committed
31

32
eval_logger = eval_logger
baberabb's avatar
baberabb committed
33

baberabb's avatar
baberabb committed
34
35

@register_model("vllm")
36
class VLLM(TemplateLM):
baberabb's avatar
baberabb committed
37
38
39
40
41
42
43
44
    _DEFAULT_MAX_LENGTH = 2048

    def __init__(
        self,
        pretrained="gpt2",
        dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
        revision: Optional[str] = None,
        trust_remote_code: Optional[bool] = False,
baberabb's avatar
baberabb committed
45
        tokenizer: Optional[str] = None,
baberabb's avatar
baberabb committed
46
        tokenizer_mode: Literal["auto", "slow"] = "auto",
baberabb's avatar
baberabb committed
47
        tokenizer_revision: Optional[str] = None,
48
        add_bos_token: Optional[bool] = False,
49
        prefix_token_id: Optional[int] = None,
baberabb's avatar
baberabb committed
50
        tensor_parallel_size: int = 1,
51
        quantization: Optional[str] = None,
baberabb's avatar
baberabb committed
52
53
        max_gen_toks: int = 256,
        swap_space: int = 4,
baberabb's avatar
baberabb committed
54
        batch_size: Union[str, int] = 1,
baberabb's avatar
baberabb committed
55
        max_batch_size=None,
baberabb's avatar
baberabb committed
56
        max_length: int = None,
57
        max_model_len: int = None,
baberabb's avatar
baberabb committed
58
        seed: int = 1234,
59
        gpu_memory_utilization: float = 0.9,
baberabb's avatar
baberabb committed
60
        device: str = "cuda",
61
        data_parallel_size: int = 1,
bcicc's avatar
bcicc committed
62
        lora_local_path: str = None,
Baber Abbasi's avatar
Baber Abbasi committed
63
        **kwargs,
baberabb's avatar
baberabb committed
64
65
    ):
        super().__init__()
66

67
        if not find_spec("vllm"):
68
            raise Exception(
69
70
                "attempted to use 'vllm' LM type, but package `vllm` is not installed. "
                "Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
71
72
            )

baberabb's avatar
baberabb committed
73
        assert "cuda" in device or device is None, "vLLM only supports CUDA"
74
75
76
77
78
        assert (
            max_length is None or max_model_len is None
        ), "Either max_length or max_model_len may be provided, but not both"

        self._max_length = max_model_len if max_model_len is not None else max_length
baberabb's avatar
baberabb committed
79
        self.tensor_parallel_size = int(tensor_parallel_size)
80
        self.data_parallel_size = int(data_parallel_size)
baberabb's avatar
baberabb committed
81
82
83
84
85
        self.model_args = {
            "model": pretrained,
            "gpu_memory_utilization": float(gpu_memory_utilization),
            "revision": revision,
            "dtype": dtype,
baberabb's avatar
baberabb committed
86
            "tokenizer": tokenizer,
baberabb's avatar
baberabb committed
87
            "tokenizer_mode": tokenizer_mode,
baberabb's avatar
baberabb committed
88
            "tokenizer_revision": tokenizer_revision,
baberabb's avatar
baberabb committed
89
90
            "trust_remote_code": trust_remote_code,
            "tensor_parallel_size": int(tensor_parallel_size),
91
            "max_model_len": int(self._max_length) if self._max_length else None,
baberabb's avatar
baberabb committed
92
93
94
95
            "swap_space": int(swap_space),
            "quantization": quantization,
            "seed": int(seed),
        }
Baber Abbasi's avatar
Baber Abbasi committed
96
        self.model_args.update(kwargs)
97
98
99
100
101
        self.batch_size = (
            "auto"
            if isinstance(batch_size, str) and "auto" in batch_size
            else batch_size
        )
102
        if self.data_parallel_size <= 1:
baberabb's avatar
baberabb committed
103
            self.model = LLM(**self.model_args)
baberabb's avatar
baberabb committed
104
        else:
Baber Abbasi's avatar
Baber Abbasi committed
105
106
107
108
109
110
            assert parse_version(version("vllm")) < parse_version(
                "0.3.3"
            ), "data_parallel is only compatible with vllm < v0.3.3."
            eval_logger.warning(
                "You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
            )
baberabb's avatar
baberabb committed
111
            self.model_args["worker_use_ray"] = True
112
113
114
115
116
117
118
119
            self.batch_size = "auto"
            eval_logger.info("Manual batching is not compatible with data parallelism.")

            from transformers import AutoConfig

            self._config = AutoConfig.from_pretrained(
                pretrained, trust_remote_code=trust_remote_code, revision=revision
            )
baberabb's avatar
nits  
baberabb committed
120
121
122
123
124
125
        self.tokenizer = get_tokenizer(
            tokenizer if tokenizer else pretrained,
            tokenizer_mode=tokenizer_mode,
            trust_remote_code=trust_remote_code,
            tokenizer_revision=tokenizer_revision,
        )
126
        self.add_bos_token = add_bos_token
127
128
129
130
131
        self.custom_prefix_token_id = prefix_token_id
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
132

baberabb's avatar
baberabb committed
133
134
        self._max_gen_toks = max_gen_toks

bcicc's avatar
bcicc committed
135
136
137
138
139
140
141
142
        if lora_local_path is not None:
            assert parse_version(version("vllm")) > parse_version(
                "0.3.0"
            ), "lora adapters only compatible with vllm > v0.3.0."
            self.lora_request = LoRARequest("finetuned", 1, lora_local_path)
        else:
            self.lora_request = None

baberabb's avatar
baberabb committed
143
144
145
146
147
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

148
149
150
151
152
153
154
155
156
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

baberabb's avatar
baberabb committed
157
158
159
160
    @property
    def max_length(self):
        if self._max_length:  # if max length manually set, return it
            return self._max_length
161
162
163
164
165
166
167
168
169
170
171
172
        if self.data_parallel_size <= 1:
            return self.model.llm_engine.model_config.max_model_len
        else:
            seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
            for attr in seqlen_config_attrs:
                if hasattr(self._config, attr):
                    return getattr(self._config, attr)
            if hasattr(self.tokenizer, "model_max_length"):
                if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                    return self._DEFAULT_MAX_LENGTH
                return self.tokenizer.model_max_length
            return self._DEFAULT_MAX_LENGTH
baberabb's avatar
baberabb committed
173
174
175
176
177

    @property
    def max_gen_toks(self):
        return self._max_gen_toks

baberabb's avatar
baberabb committed
178
179
180
181
    def tok_encode(
        self,
        string: str,
        left_truncate_len=None,
182
        add_special_tokens=None,
baberabb's avatar
baberabb committed
183
184
        truncation=False,
    ):
baberabb's avatar
baberabb committed
185
        """ """
186
187
        if not add_special_tokens:
            add_special_tokens = False or self.add_bos_token
baberabb's avatar
baberabb committed
188
189
190
        encoding = self.tokenizer.encode(
            string, add_special_tokens=add_special_tokens, truncation=truncation
        )
baberabb's avatar
baberabb committed
191
192
193
194
195
196
197
198
199

        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]

        return encoding

    def _model_generate(
        self,
baberabb's avatar
baberabb committed
200
        requests: List[List[int]] = None,
baberabb's avatar
baberabb committed
201
202
203
204
205
206
        generate: bool = False,
        max_tokens: int = None,
        stop: Optional[List[str]] = None,
        **kwargs,
    ):
        if generate:
207
            kwargs = self.modify_gen_kwargs(kwargs)
baberabb's avatar
baberabb committed
208
            sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
baberabb's avatar
baberabb committed
209
        else:
baberabb's avatar
baberabb committed
210
            sampling_params = SamplingParams(
211
                temperature=0, prompt_logprobs=1, max_tokens=1
baberabb's avatar
baberabb committed
212
            )
213
        if self.data_parallel_size > 1:
Baber Abbasi's avatar
Baber Abbasi committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
            # vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote
            # also seems to only work with decorator and not with ray.remote() fn
            # see https://github.com/vllm-project/vllm/issues/973
            # note: this has changed on 0.3.3, and it only works now if num_gpus are set.
            # but then tensor_parallel breaks
            @ray.remote
            def run_inference_one_model(
                model_args: dict, sampling_params, requests: List[List[int]]
            ):
                llm = LLM(**model_args)
                return llm.generate(
                    prompt_token_ids=requests, sampling_params=sampling_params
                )

228
229
230
            # dispatch requests to all self.data_parallel_size workers, in interleaved fashion
            # interleaved important to balance context lengths across workers
            requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
Baber Abbasi's avatar
Baber Abbasi committed
231
232
233
            inputs = ((self.model_args, sampling_params, req) for req in requests)
            object_refs = [run_inference_one_model.remote(*x) for x in inputs]
            results = ray.get(object_refs)
234
235
            # Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
            ray.shutdown()
baberabb's avatar
baberabb committed
236
            # flatten results
237
            return undistribute(results)
baberabb's avatar
baberabb committed
238

bcicc's avatar
bcicc committed
239
240
241
242
243
244
245
246
247
248
249
250
251
        if self.lora_request is not None:
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
                lora_request=self.lora_request,
            )
        else:
            outputs = self.model.generate(
                prompt_token_ids=requests,
                sampling_params=sampling_params,
                use_tqdm=True if self.batch_size == "auto" else False,
            )
baberabb's avatar
baberabb committed
252
253
        return outputs

254
255
256
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
baberabb's avatar
baberabb committed
257
258
        loglikelihoods = []

259
        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
baberabb's avatar
baberabb committed
260
261
            rolling_token_windows = list(
                map(
262
263
                    make_disjoint_window,
                    get_rolling_token_windows(
baberabb's avatar
baberabb committed
264
265
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
baberabb's avatar
baberabb committed
266
                        max_seq_len=self.max_length - 1,
baberabb's avatar
baberabb committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                        context_len=1,
                    ),
                )
            )

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)
        return loglikelihoods

285
286
287
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
288
        res = []
baberabb's avatar
baberabb committed
289
290
291

        # batch tokenize contexts
        context, all_gen_kwargs = zip(*(req.args for req in requests))
292
        context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
baberabb's avatar
baberabb committed
293
294
295
        requests = [
            ((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
        ]
baberabb's avatar
baberabb committed
296
297
298
299
300
301
302
303

        def _collate_gen(_requests):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
304
            return -len(_requests[0][1]), _requests[0][0]
baberabb's avatar
baberabb committed
305
306
307
308

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
309
        re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
310
311
312
        chunks = re_ords.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
        )
baberabb's avatar
baberabb committed
313

314
315
        pbar = tqdm(
            total=len(requests),
316
            disable=(disable_tqdm or (self.rank != 0)),
317
318
            desc="Running generate_until requests",
        )
baberabb's avatar
baberabb committed
319
        # for each different set of kwargs, we execute all requests, by batch.
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        for chunk in chunks:
            context_and_encoding, all_gen_kwargs = zip(*chunk)
            context, context_encoding = zip(*context_and_encoding)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            until = None
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                if "until" in kwargs.keys():
                    until = kwargs.pop("until")
                    if isinstance(until, str):
                        until = [until]
                    elif not isinstance(until, list):
                        raise ValueError(
                            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
                        )
            else:
                raise ValueError(
                    f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
baberabb's avatar
baberabb committed
341
                )
342
            # add EOS token to stop sequences
Baber Abbasi's avatar
Baber Abbasi committed
343
            eos = self.tokenizer.decode(self.eot_token_id)
344
            if not until:
345
346
347
                until = [eos]
            else:
                until.append(eos)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
            # max len for inputs = max length, minus room to generate the max new tokens
            max_ctx_len = self.max_length - max_gen_toks
            context_encoding = [x[-max_ctx_len:] for x in context_encoding]

            # perform batched generation
            cont = self._model_generate(
                requests=context_encoding,
                generate=True,
                max_tokens=max_gen_toks,
                stop=until,
                **kwargs,
            )
baberabb's avatar
baberabb committed
366

367
368
369
370
371
372
373
374
            # cache generations
            for output, context in zip(cont, context):
                generated_text = output.outputs[0].text
                res.append(generated_text)
                self.cache_hook.add_partial(
                    "generate_until", (context, gen_kwargs), generated_text
                )
                pbar.update(1)
baberabb's avatar
baberabb committed
375
376

        pbar.close()
377
378
        # reorder all group of results back to original unsorted form
        return re_ords.get_original(res)
baberabb's avatar
baberabb committed
379
380

    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
381
382
383
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
baberabb's avatar
baberabb committed
384
385
386
387
388
389
390
    ) -> List[Tuple[float, bool]]:
        res = []

        def _collate(x):
            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

391
392
393
394
        # Reorder requests by length and batch
        re_ord = Collator(requests, sort_fn=_collate)
        chunks = re_ord.get_batched(
            n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
baberabb's avatar
baberabb committed
395
        )
396

397
398
399
400
401
        pbar = tqdm(
            total=len(requests),
            disable=disable_tqdm,
            desc="Running loglikelihood requests",
        )
baberabb's avatar
baberabb committed
402
        for chunk in chunks:
403
            inputs = []
baberabb's avatar
baberabb committed
404
405
406
407
408
409
410
            ctxlens = []
            for cache_key, context_enc, continuation_enc in chunk:
                inp = (context_enc + continuation_enc)[-(self.max_length) :]
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - (self.max_length)
                )

411
                inputs.append(inp)
baberabb's avatar
baberabb committed
412
413
                ctxlens.append(ctxlen)

414
            outputs = self._model_generate(requests=inputs, generate=False)
baberabb's avatar
baberabb committed
415

416
417
            for output, ctxlen, (cache_key, _, _), inp in zip(
                outputs, ctxlens, chunk, inputs
baberabb's avatar
baberabb committed
418
419
            ):
                answer = self._parse_logprobs(
420
421
422
                    tokens=inp,
                    outputs=output,
                    ctxlen=ctxlen,
baberabb's avatar
baberabb committed
423
424
425
426
427
428
429
                )

                res.append(answer)

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)
430
                pbar.update(1)
baberabb's avatar
baberabb committed
431
432
433
434
        pbar.close()
        return re_ord.get_original(res)

    @staticmethod
baberabb's avatar
baberabb committed
435
    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
baberabb's avatar
baberabb committed
436
437
438
        """Process logprobs and tokens.

        :param tokens: list
439
            Input tokens (potentially left-truncated)
baberabb's avatar
bugfix  
baberabb committed
440
        :param outputs: RequestOutput
441
            Contains prompt_logprobs
baberabb's avatar
baberabb committed
442
443
444
445
446
447
448
449
450
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

451
        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
baberabb's avatar
bugfix  
baberabb committed
452
453
        continuation_logprobs_dicts = outputs.prompt_logprobs

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

baberabb's avatar
baberabb committed
474
        # Calculate continuation_logprobs
475
        # assume ctxlen always >= 1
baberabb's avatar
baberabb committed
476
        continuation_logprobs = sum(
baberabb's avatar
baberabb committed
477
            logprob_dict.get(token)
baberabb's avatar
baberabb committed
478
            for token, logprob_dict in zip(
baberabb's avatar
bugfix  
baberabb committed
479
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
baberabb's avatar
baberabb committed
480
481
482
483
484
            )
        )

        # Determine if is_greedy
        is_greedy = True
baberabb's avatar
baberabb committed
485
486
487
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
baberabb's avatar
bugfix  
baberabb committed
488
489
490
491
492
493
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break
baberabb's avatar
baberabb committed
494
495

        return continuation_logprobs, is_greedy
496
497
498
499

    @staticmethod
    def modify_gen_kwargs(kwargs: dict) -> dict:
        # sampling_params
500
501
        do_sample = kwargs.pop("do_sample", None)
        if do_sample is False or "temperature" not in kwargs:
502
503
504
505
506
507
508
            kwargs["temperature"] = 0.0
        # hf defaults
        kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
        kwargs["spaces_between_special_tokens"] = kwargs.get(
            "spaces_between_special_tokens", False
        )
        return kwargs