evaluator.py 10.8 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
FarzanehNakhaee's avatar
FarzanehNakhaee committed
3
import json
lintangsutawika's avatar
lintangsutawika committed
4
import collections
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
6
import logging
import sys
lintangsutawika's avatar
lintangsutawika committed
7

8
9
import torch

10
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
11
12

import lm_eval.api
13
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
17

lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    make_table,
22
    create_iterator,
lintangsutawika's avatar
lintangsutawika committed
23
24
    get_git_commit_hash,
)
25

lintangsutawika's avatar
lintangsutawika committed
26
27
from lm_eval.logger import eval_logger

FarzanehNakhaee's avatar
FarzanehNakhaee committed
28
29
30
31
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))

Fabrizio Milo's avatar
Fabrizio Milo committed
32

33
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
34
35
36
37
38
39
40
41
42
43
44
45
46
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    check_integrity=False,
    decontamination_ngrams_path=None,
):
47

48
    """Instantiate and evaluate a model on a list of tasks.
49

50
51
52
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
53
        String arguments for each model class, see LM.create_from_arg_string.
54
55
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
56
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
57
58
59
60
61
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
62
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
63
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
64
        Whether or not to cache
65
66
67
68
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
69
70
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
71
    :return
72
        Dictionary of results
73
    """
74
75
76
    random.seed(1234)
    np.random.seed(1234)

77
78
79
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
80
81
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
82
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
Fabrizio Milo's avatar
Fabrizio Milo committed
83
84
            model_args, {"batch_size": batch_size, "device": device}
        )
85
    else:
86
        assert isinstance(model, lm_eval.api.model.LM)
87
        lm = model
88

lintangsutawika's avatar
update  
lintangsutawika committed
89
    task_dict = lm_eval.tasks.get_task_dict(tasks, num_fewshot=num_fewshot)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
90

Stephen Hogg's avatar
Stephen Hogg committed
91
    if check_integrity:
92
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
93

94
95
96
97
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
98
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
99
        decontamination_ngrams_path=decontamination_ngrams_path,
100
    )
101

102
103
104
105
106
107
108
109
110
111
112
113
    if lm.rank == 0:
        # add info about the model and few shot config
        results["config"] = {
            "model": model,
            "model_args": model_args,
            "num_fewshot": num_fewshot,
            "batch_size": batch_size,
            "device": device,
            "no_cache": no_cache,
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
        }
114
        results["git_hash"] = get_git_commit_hash()
115
116
117
        return results
    else:
        return None
118

Leo Gao's avatar
Leo Gao committed
119

120
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
121

Fabrizio Milo's avatar
Fabrizio Milo committed
122

123
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
124
125
126
127
128
129
130
def evaluate(
    lm,
    task_dict,
    limit=None,
    bootstrap_iters=100000,
    decontamination_ngrams_path=None,
):
131
132
133
134
135
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
136
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
137
138
139
140
141
142
143
144
145
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :return
        Dictionary of results
    """
146

lintangsutawika's avatar
lintangsutawika committed
147
    # decontaminate = decontamination_ngrams_path is not None
148

Leo Gao's avatar
Leo Gao committed
149
    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
150
    versions = collections.defaultdict(dict)
151
    configs = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
152
153
154

    requests = collections.defaultdict(list)

lintangsutawika's avatar
lintangsutawika committed
155
    # docs = {}
Leo Gao's avatar
Leo Gao committed
156

157
    # get lists of each type of request
158
    for task_name, task in task_dict.items():
Leo Gao's avatar
Leo Gao committed
159
        versions[task_name] = task.VERSION
lintangsutawika's avatar
lintangsutawika committed
160
161
162
        configs[task_name] = dict(
            task.dump_config()
        )  # TODO: don't access a private attribute here ; for non-YAML tasks handle this case
lintangsutawika's avatar
lintangsutawika committed
163

Leo Gao's avatar
Leo Gao committed
164
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
165
166
167
168
169
        # task_docs = list(task_doc_func())
        # rnd = random.Random()
        # rnd.seed(42)
        # rnd.shuffle(task_docs)

170
171
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

172
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
173
174
175
176
177
178
        reqtype = (
            "loglikelihood"
            if task.OUTPUT_TYPE == "multiple_choice"
            else task.OUTPUT_TYPE
        )  # TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances)
179
180

        if lm.world_size > 1:
181
182
183
184
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
185

186
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
187
            numpad = max(gathered_item) - gathered_item[lm.rank]
188

189
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
190
191
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
192
        eval_logger.info("Running {} requests".format(reqtype))
193
194
195
196
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
197

198
        if (lm.world_size > 1) and (numpad > 0):
199
200
201
            for _ in range(numpad):
                cloned_reqs.extend([req] * req.repeats)

202
203
204
205
206
207
208
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

209
210
211
    if lm.world_size > 1:
        lm.accelerator.wait_for_everyone()

212
213
214
215
216
217
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
lintangsutawika's avatar
lintangsutawika committed
218
    # TODO: make metric configurable, add metric registry
Leo Gao's avatar
Leo Gao committed
219
220
221
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
222
223
224
225
    for task_name, task in task_dict.items():
        # calculate values for each filter setup (TODO: make getting list of keys cleaner)
        # TODO: make it possible to use a different metric per key
        for key in task.instances[0].filtered_resps.keys():
226
227
228
229
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
230
                if task.has_test_docs()
231
232
233
234
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
FarzanehNakhaee's avatar
FarzanehNakhaee committed
235
            example_logger = logging.getLogger("examples")
236
            for doc_id, doc in doc_iterator:
237
238
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
239
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
240
241
242
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
FarzanehNakhaee's avatar
FarzanehNakhaee committed
243
                target = task.doc_to_target(doc)
244
                example = {
lintangsutawika's avatar
lintangsutawika committed
245
246
247
                    "doc_id": doc_id,
                    "doc": doc,
                    "target": target,
248
                    "resps": [req.resps for req in requests],
lintangsutawika's avatar
lintangsutawika committed
249
250
                    "filtered_resps": [req.filtered_resps[key] for req in requests],
                }
FarzanehNakhaee's avatar
FarzanehNakhaee committed
251
252
                example.update(metrics)
                example_logger.info(json.dumps(example))
253
254
255
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

256
    if lm.world_size > 1:
257
        # if multigpu, then gather data across all ranks
258
259
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
260
261

            numitem = 0
262
            if type(items[0]) == tuple:
263
264
                numitem = len(items[0])

265
266
            # distributed gather requires all ranks to have same dimensions
            # so we pad out with float32 min value
267
            pad_value = torch.finfo(torch.float32).min
268
269
270
271
272
273
            metrics_tensor = torch.tensor(items, device=lm.device)

            original_dtype = metrics_tensor.dtype  # store original dtype
            torch_device_tensor = lm.accelerator.pad_across_processes(
                metrics_tensor.to(torch.float32), pad_index=pad_value
            )
274
            gathered_item = lm.accelerator.gather(torch_device_tensor)
275

276
            if numitem > 0:
277
                gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
278
279
            else:
                gathered_filtered = gathered_item[gathered_item != pad_value]
280
281
282
283

            gathered_item = (
                gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
            )
284
285
286
            # reconvert if we were passed a tuple of values
            if numitem > 0:
                gathered_item = [tuple(g) for g in gathered_item]
287

288
289
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
290

291
        vals = vals_torch
292

293
294
295
296
297
    if lm.rank == 0:
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
298
            results[task_name][metric + "," + key] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
299

300
301
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
302

303
304
305
306
307
308
309
310
            stderr = lm_eval.api.metrics.stderr_for_metric(
                metric=task.aggregation()[metric],
                bootstrap_iters=min(bootstrap_iters, 1000)
                if metric in ["bleu", "chrf", "ter"]
                else bootstrap_iters,
            )

            if stderr is not None:
311
                results[task_name][metric + "_stderr" + "," + key] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
312

lintangsutawika's avatar
lintangsutawika committed
313
314
315
316
317
        return {
            "results": dict(results),
            "configs": dict(configs),
            "versions": dict(versions),
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
318

319
320
    else:
        return None