registry.py 23.8 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
from __future__ import annotations

import importlib
import inspect
import threading
Baber's avatar
Baber committed
6
import warnings
Baber's avatar
Baber committed
7
8
9
10
11
12
13
14
15
from collections.abc import Iterable, Mapping, MutableMapping
from dataclasses import dataclass
from functools import lru_cache
from types import MappingProxyType
from typing import (
    Any,
    Callable,
    Generic,
    TypeVar,
Baber's avatar
Baber committed
16
    cast,
Baber's avatar
Baber committed
17
18
19
20
21
22
23
24
)


try:  # Python≥3.10
    import importlib.metadata as md
except ImportError:  # pragma: no cover - fallback for 3.8/3.9 runtimes
    import importlib_metadata as md  # type: ignore

Baber's avatar
Baber committed
25
26
# Legacy exports (keep for one release, then drop)
LEGACY_EXPORTS = [
Baber's avatar
Baber committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    "DEFAULT_METRIC_REGISTRY",
    "AGGREGATION_REGISTRY",
    "register_model",
    "get_model",
    "register_task",
    "get_task",
    "register_metric",
    "get_metric",
    "register_metric_aggregation",
    "get_metric_aggregation",
    "register_higher_is_better",
    "is_higher_better",
    "register_filter",
    "get_filter",
    "register_aggregation",
    "get_aggregation",
    "MODEL_REGISTRY",
    "TASK_REGISTRY",
    "METRIC_REGISTRY",
    "METRIC_AGGREGATION_REGISTRY",
    "HIGHER_IS_BETTER_REGISTRY",
    "FILTER_REGISTRY",
]

Baber's avatar
Baber committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
__all__ = [
    # canonical
    "Registry",
    "MetricSpec",
    "model_registry",
    "task_registry",
    "metric_registry",
    "metric_agg_registry",
    "higher_is_better_registry",
    "filter_registry",
    "freeze_all",
    # legacy
    *LEGACY_EXPORTS,
]

Baber's avatar
Baber committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
T = TypeVar("T")


# ────────────────────────────────────────────────────────────────────────
# Generic Registry
# ────────────────────────────────────────────────────────────────────────


class Registry(Generic[T]):
    """Name -> object mapping with decorator helpers and **lazy import** support."""

    #: The underlying mutable mapping (might turn into MappingProxy on freeze)
    _objects: MutableMapping[str, T | str | md.EntryPoint]

    def __init__(
        self,
        name: str,
        *,
        base_cls: type[T] | None = None,
        store: MutableMapping[str, T | str | md.EntryPoint] | None = None,
        validator: Callable[[T], bool] | None = None,
    ) -> None:
        self._name: str = name
        self._base_cls: type[T] | None = base_cls
        self._objects = store if store is not None else {}
        self._metadata: dict[
            str, dict[str, Any]
        ] = {}  # Store metadata for each registered item
        self._validator = validator  # Custom validation function
        self._lock = threading.RLock()

    # ------------------------------------------------------------------
    # Registration helpers (decorator or direct call)
    # ------------------------------------------------------------------

Baber's avatar
Baber committed
101
102
103
104
105
106
107
108
109
110
111
112
113
    def _resolve_aliases(
        self, target: T | str | md.EntryPoint, aliases: tuple[str, ...]
    ) -> tuple[str, ...]:
        """Resolve aliases for registration."""
        if not aliases:
            return (getattr(target, "__name__", str(target)),)
        return aliases

    def _check_and_store(
        self,
        alias: str,
        target: T | str | md.EntryPoint,
        metadata: dict[str, Any] | None,
Baber's avatar
Baber committed
114
    ) -> None:
Baber's avatar
Baber committed
115
        """Check constraints and store the target with optional metadata.
Baber's avatar
Baber committed
116

Baber's avatar
Baber committed
117
118
119
120
121
122
123
124
125
        Collision policy:
        1. If alias doesn't exist → store it
        2. If identical value → silently succeed (idempotent)
        3. If lazy placeholder + matching concrete class → replace with concrete
        4. Otherwise → raise ValueError

        Type checking:
        - Eager for concrete classes at registration time
        - Deferred for lazy placeholders until materialization
Baber's avatar
Baber committed
126
127
        """
        with self._lock:
Baber's avatar
Baber committed
128
129
130
            # Case 1: New alias
            if alias not in self._objects:
                # Type check concrete classes before storing
Baber's avatar
Baber committed
131
132
133
134
135
136
137
                if self._base_cls is not None and isinstance(target, type):
                    if not issubclass(target, self._base_cls):  # type: ignore[arg-type]
                        raise TypeError(
                            f"{target} must inherit from {self._base_cls} "
                            f"to be registered as a {self._name}"
                        )
                self._objects[alias] = target
Baber's avatar
Baber committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
                if metadata:
                    self._metadata[alias] = metadata
                return

            existing = self._objects[alias]

            # Case 2: Identical value - idempotent
            if existing == target:
                return

            # Case 3: Lazy placeholder being replaced by its concrete class
            if isinstance(existing, str) and isinstance(target, type):
                mod_path, _, cls_name = existing.partition(":")
                if (
                    cls_name
                    and hasattr(target, "__module__")
                    and hasattr(target, "__name__")
                ):
                    expected_path = f"{target.__module__}:{target.__name__}"
                    if existing == expected_path:
                        self._objects[alias] = target
                        if metadata:
                            self._metadata[alias] = metadata
                        return

            # Case 4: Collision - different values
            raise ValueError(
                f"{self._name!r} '{alias}' already registered "
                f"(existing: {existing}, new: {target})"
            )

    def register(
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        self,
        alias: str,
        target: T | str | md.EntryPoint,
        metadata: dict[str, Any] | None = None,
    ) -> T | str | md.EntryPoint:
        """Register a target (object or lazy placeholder) under the given alias.

        Args:
            alias: Name to register under
            target: Object to register (can be concrete object or lazy string "module:Class")
            metadata: Optional metadata to associate with this registration

        Returns:
            The target that was registered

        Examples:
            # Direct registration of concrete object
            registry.register("mymodel", MyModelClass)

            # Lazy registration with module path
            registry.register("mymodel", "mypackage.models:MyModelClass")
        """
        self._check_and_store(alias, target, metadata)
        return target

    def decorator(
Baber's avatar
Baber committed
196
197
198
        self,
        *aliases: str,
        metadata: dict[str, Any] | None = None,
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    ) -> Callable[[T], T]:
        """Create a decorator for registering objects.

        Args:
            *aliases: Names to register under (if empty, uses object's __name__)
            metadata: Optional metadata to associate with this registration

        Returns:
            Decorator function that registers its target

        Example:
            @registry.decorator("mymodel", "model-v2")
            class MyModel:
                pass
        """
Baber's avatar
Baber committed
214

215
216
217
218
219
        def wrapper(obj: T) -> T:
            resolved_aliases = aliases or (getattr(obj, "__name__", str(obj)),)
            for alias in resolved_aliases:
                self.register(alias, obj, metadata)
            return obj
Baber's avatar
Baber committed
220

221
        return wrapper
Baber's avatar
Baber committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    # ------------------------------------------------------------------
    # Lookup & materialisation
    # ------------------------------------------------------------------

    @lru_cache(maxsize=256)  # Bounded cache to prevent memory growth
    def _materialise(self, target: T | str | md.EntryPoint) -> T:
        """Import *target* if it is a dotted‑path string or EntryPoint."""
        if isinstance(target, str):
            mod, _, obj_name = target.partition(":")
            if not _:
                raise ValueError(
                    f"Lazy path '{target}' must be in 'module:object' form"
                )
            module = importlib.import_module(mod)
Baber's avatar
Baber committed
237
            return cast(T, getattr(module, obj_name))
Baber's avatar
Baber committed
238
        if isinstance(target, md.EntryPoint):
Baber's avatar
Baber committed
239
            return cast(T, target.load())
Baber's avatar
Baber committed
240
241
242
        return target  # concrete already

    def get(self, alias: str) -> T:
Baber's avatar
Baber committed
243
244
245
246
247
248
249
        # Fast path: check if already materialized without lock
        target = self._objects.get(alias)
        if target is not None and not isinstance(target, (str, md.EntryPoint)):
            # Already materialized and validated, return immediately
            return target

        # Slow path: acquire lock for materialization
Baber's avatar
Baber committed
250
251
252
253
254
255
256
257
258
        with self._lock:
            try:
                target = self._objects[alias]
            except KeyError as exc:
                raise KeyError(
                    f"Unknown {self._name} '{alias}'. Available: "
                    f"{', '.join(self._objects)}"
                ) from exc

Baber's avatar
Baber committed
259
            # Double-check after acquiring a lock (may have been materialized by another thread)
Baber's avatar
Baber committed
260
261
262
263
264
265
            if not isinstance(target, (str, md.EntryPoint)):
                return target

            # Materialize the lazy placeholder
            concrete: T = self._materialise(target)

Baber's avatar
Baber committed
266
            # Swap placeholder with a concrete object (with race condition check)
Baber's avatar
Baber committed
267
268
269
270
271
            if concrete is not target:
                # Final check: another thread might have materialized while we were working
                current = self._objects.get(alias)
                if isinstance(current, (str, md.EntryPoint)):
                    # Still a placeholder, safe to replace
Baber's avatar
Baber committed
272
                    self._objects[alias] = concrete
Baber's avatar
Baber committed
273
274
275
                else:
                    # Another thread already materialized it, use their result
                    concrete = current  # type: ignore[assignment]
Baber's avatar
Baber committed
276
277
278
279
280
281
282

            # Late type check (for placeholders)
            if self._base_cls is not None and not issubclass(concrete, self._base_cls):  # type: ignore[arg-type]
                raise TypeError(
                    f"{concrete} does not inherit from {self._base_cls} "
                    f"(registered under alias '{alias}')"
                )
283

Baber's avatar
Baber committed
284
285
            # Custom validation - run on materialization
            if self._validator and not self._validator(concrete):
Baber's avatar
Baber committed
286
287
288
289
                raise ValueError(
                    f"{concrete} failed custom validation for {self._name} registry "
                    f"(registered under alias '{alias}')"
                )
Baber Abbasi's avatar
Baber Abbasi committed
290

Baber's avatar
Baber committed
291
            return concrete
292

Baber's avatar
Baber committed
293
    # Mapping / dunder helpers -------------------------------------------------
lintangsutawika's avatar
lintangsutawika committed
294

Baber's avatar
Baber committed
295
296
    def __getitem__(self, alias: str) -> T:  # noqa
        return self.get(alias)
297

Baber's avatar
Baber committed
298
299
    def __iter__(self):  # noqa
        return iter(self._objects)
300

Baber's avatar
Baber committed
301
302
    def __len__(self) -> int:  # noqa
        return len(self._objects)
303

Baber's avatar
Baber committed
304
305
    def items(self):  # noqa
        return self._objects.items()
306

Baber's avatar
Baber committed
307
    # Introspection -----------------------------------------------------------
308

Baber's avatar
Baber committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    def origin(self, alias: str) -> str | None:
        obj = self._objects.get(alias)
        try:
            if isinstance(obj, str) or isinstance(obj, md.EntryPoint):
                return None  # placeholder - unknown until imported
            file = inspect.getfile(obj)  # type: ignore[arg-type]
            line = inspect.getsourcelines(obj)[1]  # type: ignore[arg-type]
            return f"{file}:{line}"
        except (
            TypeError,
            OSError,
            AttributeError,
        ):  # pragma: no cover - best-effort only
            # TypeError: object not suitable for inspect
            # OSError: file not found or accessible
            # AttributeError: object lacks expected attributes
            return None
326

Baber's avatar
Baber committed
327
328
329
330
    def get_metadata(self, alias: str) -> dict[str, Any] | None:
        """Get metadata for a registered item."""
        with self._lock:
            return self._metadata.get(alias)
331

Baber's avatar
Baber committed
332
    # Mutability --------------------------------------------------------------
333

Baber's avatar
Baber committed
334
335
336
337
338
339
    def freeze(self):
        """Make the registry *names* immutable (materialisation still works)."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                return  # already frozen
            self._objects = MappingProxyType(dict(self._objects))  # type: ignore[assignment]
340

Baber's avatar
Baber committed
341
342
343
344
345
346
347
    def clear(self):
        """Clear the registry (useful for tests). Cannot be called on frozen registries."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                raise RuntimeError("Cannot clear a frozen registry")
            self._objects.clear()
            self._metadata.clear()
Baber's avatar
Baber committed
348
            self._materialise.cache_clear()  # type: ignore[attr-defined]
349
350


Baber's avatar
Baber committed
351
352
353
# ────────────────────────────────────────────────────────────────────────
# Structured objects stored in registries
# ────────────────────────────────────────────────────────────────────────
354
355


Baber's avatar
Baber committed
356
357
358
@dataclass(frozen=True)
class MetricSpec:
    """Bundle compute fn, aggregator, and *higher‑is‑better* flag."""
359

Baber's avatar
Baber committed
360
361
362
363
364
    compute: Callable[[Any, Any], Any]
    aggregate: Callable[[Iterable[Any]], Mapping[str, float]]
    higher_is_better: bool = True
    output_type: str | None = None  # e.g., "probability", "string", "numeric"
    requires: list[str] | None = None  # Dependencies on other metrics/data
365
366


Baber's avatar
Baber committed
367
368
369
# ────────────────────────────────────────────────────────────────────────
# Concrete registries used by lm_eval
# ────────────────────────────────────────────────────────────────────────
370

Baber's avatar
Baber committed
371
from lm_eval.api.model import LM  # noqa: E402
372
373


Baber's avatar
Baber committed
374
model_registry: Registry[LM] = Registry("model", base_cls=LM)
Baber's avatar
Baber committed
375
376
377
378
379
380
381
task_registry: Registry[Callable[..., Any]] = Registry("task")
metric_registry: Registry[MetricSpec] = Registry("metric")
metric_agg_registry: Registry[Callable[[Iterable[Any]], Mapping[str, float]]] = (
    Registry("metric aggregation")
)
higher_is_better_registry: Registry[bool] = Registry("higher‑is‑better flag")
filter_registry: Registry[Callable] = Registry("filter")
382

Baber's avatar
Baber committed
383
# Default metric registry for output types
384
385
386
387
388
389
DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
390
    "multiple_choice": ["acc", "acc_norm"],
391
    "generate_until": ["exact_match"],
392
393
}

Baber's avatar
Baber committed
394
395
396
397
398
399
400

def default_metrics_for(output_type: str) -> list[str]:
    """Get default metrics for a given output type dynamically.

    This walks the metric registry to find metrics that match the output type.
    Falls back to DEFAULT_METRIC_REGISTRY if no dynamic matches found.
    """
Baber's avatar
Baber committed
401
    # First, check static defaults
Baber's avatar
Baber committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    if output_type in DEFAULT_METRIC_REGISTRY:
        return DEFAULT_METRIC_REGISTRY[output_type]

    # Walk metric registry for matching output types
    matching_metrics = []
    for name, metric_spec in metric_registry.items():
        if (
            isinstance(metric_spec, MetricSpec)
            and metric_spec.output_type == output_type
        ):
            matching_metrics.append(name)

    return matching_metrics if matching_metrics else []


# Aggregation registry - alias to the canonical registry for backward compatibility
AGGREGATION_REGISTRY = metric_agg_registry  # The registry itself is dict-like
Baber's avatar
Baber committed
419
420
421
422
423

# ────────────────────────────────────────────────────────────────────────
# Public helper aliases (legacy API)
# ────────────────────────────────────────────────────────────────────────

424
register_model = model_registry.decorator
Baber's avatar
Baber committed
425
426
get_model = model_registry.get

427
register_task = task_registry.decorator
Baber's avatar
Baber committed
428
429
430
431
432
433
434
435
436
get_task = task_registry.get


# Special handling for metric registration which uses different API
def register_metric(**kwargs):
    """Register a metric with metadata.

    Compatible with old registry API that used keyword arguments.
    """
437
438

    def decorate(fn):
Baber's avatar
Baber committed
439
440
441
442
        metric_name = kwargs.get("metric")
        if not metric_name:
            raise ValueError("metric name is required")

Baber's avatar
Baber committed
443
        # Determine aggregation function
Baber's avatar
Baber committed
444
        aggregate_fn: Callable[[Iterable[Any]], Mapping[str, float]] | None = None
Baber's avatar
Baber committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        if "aggregation" in kwargs:
            agg_name = kwargs["aggregation"]
            try:
                aggregate_fn = metric_agg_registry.get(agg_name)
            except KeyError:
                raise ValueError(f"Unknown aggregation: {agg_name}")
        else:
            # No aggregation specified - use a function that raises NotImplementedError
            def not_implemented_agg(values):
                raise NotImplementedError(
                    f"No aggregation function specified for metric '{metric_name}'. "
                    "Please specify an 'aggregation' parameter."
                )

            aggregate_fn = not_implemented_agg

Baber's avatar
Baber committed
461
462
463
        # Create MetricSpec with the function and metadata
        spec = MetricSpec(
            compute=fn,
Baber's avatar
Baber committed
464
            aggregate=aggregate_fn,
Baber's avatar
Baber committed
465
466
467
468
469
            higher_is_better=kwargs.get("higher_is_better", True),
            output_type=kwargs.get("output_type"),
            requires=kwargs.get("requires"),
        )

Baber's avatar
Baber committed
470
        # Use a proper registry API with metadata
471
        metric_registry.register(metric_name, spec, metadata=kwargs)
Baber's avatar
Baber committed
472

Baber's avatar
Baber committed
473
        # Also register in higher_is_better registry if specified
Baber's avatar
Baber committed
474
        if "higher_is_better" in kwargs:
475
            higher_is_better_registry.register(metric_name, kwargs["higher_is_better"])
476
477
478
479
480
481

        return fn

    return decorate


Baber's avatar
Baber committed
482
483
def get_metric(name: str, hf_evaluate_metric=False):
    """Get a metric by name, with fallback to HF evaluate."""
484
    if not hf_evaluate_metric:
Baber's avatar
Baber committed
485
486
487
488
489
490
491
492
493
        try:
            spec = metric_registry.get(name)
            if isinstance(spec, MetricSpec):
                return spec.compute
            return spec
        except KeyError:
            import logging

            logging.getLogger(__name__).warning(
494
495
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
496

Baber's avatar
Baber committed
497
    # Fallback to HF evaluate
498
    try:
Baber's avatar
Baber committed
499
500
        import evaluate as hf_evaluate

Baber Abbasi's avatar
Baber Abbasi committed
501
        metric_object = hf_evaluate.load(name)
502
503
        return metric_object.compute
    except Exception:
Baber's avatar
Baber committed
504
505
506
        import logging

        logging.getLogger(__name__).error(
507
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
508
        )
Baber's avatar
Baber committed
509
        return None
510
511


512
register_metric_aggregation = metric_agg_registry.decorator
513
514


Baber's avatar
Baber committed
515
516
517
def get_metric_aggregation(
    metric_name: str,
) -> Callable[[Iterable[Any]], Mapping[str, float]]:
Baber's avatar
Baber committed
518
    """Get the aggregation function for a metric."""
Baber's avatar
Baber committed
519
    # First, try to get from the metric registry (for metrics registered with aggregation)
Baber's avatar
Baber committed
520
521
    try:
        metric_spec = metric_registry.get(metric_name)
Baber's avatar
Baber committed
522
523
        if isinstance(metric_spec, MetricSpec) and metric_spec.aggregate:
            return metric_spec.aggregate
Baber's avatar
Baber committed
524
    except KeyError:
Baber's avatar
Baber committed
525
        pass  # Try the next registry
526

Baber's avatar
Baber committed
527
    # Fall back to metric_agg_registry (for standalone aggregations)
Baber's avatar
Baber committed
528
529
530
531
    try:
        return metric_agg_registry.get(metric_name)
    except KeyError:
        pass
532

Baber's avatar
Baber committed
533
    # If not found, raise an error
Baber's avatar
Baber committed
534
    raise KeyError(
Baber's avatar
Baber committed
535
        f"Unknown metric aggregation '{metric_name}'. Available: {list(metric_agg_registry)}"
Baber's avatar
Baber committed
536
    )
haileyschoelkopf's avatar
haileyschoelkopf committed
537
538


539
register_higher_is_better = higher_is_better_registry.decorator
Baber's avatar
Baber committed
540
is_higher_better = higher_is_better_registry.get
541

542
register_filter = filter_registry.decorator
Baber's avatar
Baber committed
543
get_filter = filter_registry.get
544

545

Baber's avatar
Baber committed
546
547
# Special handling for AGGREGATION_REGISTRY which works differently
def register_aggregation(name: str):
Baber's avatar
Baber committed
548
549
550
551
552
553
554
    """@deprecated Use metric_agg_registry.register() instead."""
    warnings.warn(
        "register_aggregation() is deprecated. Use metric_agg_registry.register() instead.",
        DeprecationWarning,
        stacklevel=2,
    )

Baber's avatar
Baber committed
555
    def decorate(fn):
Baber's avatar
Baber committed
556
        # Use the canonical registry as a single source of truth
Baber's avatar
Baber committed
557
        if name in metric_agg_registry:
Baber's avatar
Baber committed
558
559
            raise ValueError(
                f"aggregation named '{name}' conflicts with existing registered aggregation!"
560
            )
561
        metric_agg_registry.register(name, fn)
Baber's avatar
Baber committed
562
        return fn
563
564
565
566

    return decorate


Baber's avatar
Baber committed
567
568
def get_aggregation(name: str) -> Callable[[Iterable[Any]], Mapping[str, float]] | None:
    """@deprecated Use metric_agg_registry.get() instead."""
569
    try:
Baber's avatar
Baber committed
570
571
        # Use the canonical registry
        return metric_agg_registry.get(name)
Baber's avatar
Baber committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    except KeyError:
        import logging

        logging.getLogger(__name__).warning(
            f"{name} not a registered aggregation metric!"
        )
        return None


# ────────────────────────────────────────────────────────────────────────
# Optional PyPI entry‑point discovery - uncomment if desired
# ────────────────────────────────────────────────────────────────────────

# for _group, _reg in {
#     "lm_eval.models": model_registry,
#     "lm_eval.tasks": task_registry,
#     "lm_eval.metrics": metric_registry,
# }.items():
#     for _ep in md.entry_points(group=_group):
#         _reg.register(_ep.name, lazy=_ep)


# ────────────────────────────────────────────────────────────────────────
# Convenience
# ────────────────────────────────────────────────────────────────────────


def freeze_all() -> None:  # pragma: no cover
    """Freeze every global registry (idempotent)."""
    for _reg in (
        model_registry,
        task_registry,
        metric_registry,
        metric_agg_registry,
        higher_is_better_registry,
        filter_registry,
    ):
        _reg.freeze()


# ────────────────────────────────────────────────────────────────────────
# Backwards‑compatibility read‑only globals
# ────────────────────────────────────────────────────────────────────────

Baber's avatar
Baber committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
# These are direct aliases to the registries themselves, which already implement
# the Mapping protocol and provide read-only access to users (since _objects is private).
# This ensures they always reflect the current state of the registries, including
# items registered after module import.
#
# Note: We use type: ignore because Registry doesn't formally inherit from Mapping,
# but it implements all required methods (__getitem__, __iter__, __len__, items)

MODEL_REGISTRY: Mapping[str, LM] = model_registry  # type: ignore[assignment]
TASK_REGISTRY: Mapping[str, Callable[..., Any]] = task_registry  # type: ignore[assignment]
METRIC_REGISTRY: Mapping[str, MetricSpec] = metric_registry  # type: ignore[assignment]
METRIC_AGGREGATION_REGISTRY: Mapping[str, Callable] = metric_agg_registry  # type: ignore[assignment]
HIGHER_IS_BETTER_REGISTRY: Mapping[str, bool] = higher_is_better_registry  # type: ignore[assignment]
FILTER_REGISTRY: Mapping[str, Callable] = filter_registry  # type: ignore[assignment]