registry.py 23.6 KB
Newer Older
Baber's avatar
Baber committed
1
2
from __future__ import annotations

Baber's avatar
Baber committed
3
import functools
Baber's avatar
Baber committed
4
5
6
import importlib
import inspect
import threading
Baber's avatar
Baber committed
7
import warnings
Baber's avatar
Baber committed
8
9
10
11
12
13
14
15
16
from collections.abc import Iterable, Mapping, MutableMapping
from dataclasses import dataclass
from functools import lru_cache
from types import MappingProxyType
from typing import (
    Any,
    Callable,
    Generic,
    TypeVar,
Baber's avatar
Baber committed
17
    cast,
Baber's avatar
Baber committed
18
19
20
21
22
23
24
25
)


try:  # Python≥3.10
    import importlib.metadata as md
except ImportError:  # pragma: no cover - fallback for 3.8/3.9 runtimes
    import importlib_metadata as md  # type: ignore

Baber's avatar
Baber committed
26
27
# Legacy exports (keep for one release, then drop)
LEGACY_EXPORTS = [
Baber's avatar
Baber committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    "DEFAULT_METRIC_REGISTRY",
    "AGGREGATION_REGISTRY",
    "register_model",
    "get_model",
    "register_task",
    "get_task",
    "register_metric",
    "get_metric",
    "register_metric_aggregation",
    "get_metric_aggregation",
    "register_higher_is_better",
    "is_higher_better",
    "register_filter",
    "get_filter",
    "register_aggregation",
    "get_aggregation",
    "MODEL_REGISTRY",
    "TASK_REGISTRY",
    "METRIC_REGISTRY",
    "METRIC_AGGREGATION_REGISTRY",
    "HIGHER_IS_BETTER_REGISTRY",
    "FILTER_REGISTRY",
]

Baber's avatar
Baber committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
__all__ = [
    # canonical
    "Registry",
    "MetricSpec",
    "model_registry",
    "task_registry",
    "metric_registry",
    "metric_agg_registry",
    "higher_is_better_registry",
    "filter_registry",
    "freeze_all",
    # legacy
    *LEGACY_EXPORTS,
]

Baber's avatar
Baber committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
T = TypeVar("T")


# ────────────────────────────────────────────────────────────────────────
# Generic Registry
# ────────────────────────────────────────────────────────────────────────


class Registry(Generic[T]):
    """Name -> object mapping with decorator helpers and **lazy import** support."""

    #: The underlying mutable mapping (might turn into MappingProxy on freeze)
    _objects: MutableMapping[str, T | str | md.EntryPoint]

    def __init__(
        self,
        name: str,
        *,
        base_cls: type[T] | None = None,
        store: MutableMapping[str, T | str | md.EntryPoint] | None = None,
        validator: Callable[[T], bool] | None = None,
    ) -> None:
        self._name: str = name
        self._base_cls: type[T] | None = base_cls
        self._objects = store if store is not None else {}
        self._metadata: dict[
            str, dict[str, Any]
        ] = {}  # Store metadata for each registered item
        self._validator = validator  # Custom validation function
        self._lock = threading.RLock()

    # ------------------------------------------------------------------
    # Registration helpers (decorator or direct call)
    # ------------------------------------------------------------------

Baber's avatar
Baber committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    # @overload
    # def register(
    #     self,
    #     *aliases: str,
    #     lazy: None = None,
    #     metadata: dict[str, Any] | None = None,
    # ) -> Callable[[T], T]:
    #     """Register as decorator: @registry.register("foo")."""
    #     ...
    #
    # @overload
    # def register(
    #     self,
    #     *aliases: str,
    #     lazy: str | md.EntryPoint,
    #     metadata: dict[str, Any] | None = None,
    # ) -> Callable[[Any], Any]:
    #     """Register lazy: registry.register("foo", lazy="a.b:C")"""
    #     ...
Baber's avatar
Baber committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    def _resolve_aliases(
        self, target: T | str | md.EntryPoint, aliases: tuple[str, ...]
    ) -> tuple[str, ...]:
        """Resolve aliases for registration."""
        if not aliases:
            return (getattr(target, "__name__", str(target)),)
        return aliases

    def _check_and_store(
        self,
        alias: str,
        target: T | str | md.EntryPoint,
        metadata: dict[str, Any] | None,
Baber's avatar
Baber committed
135
    ) -> None:
Baber's avatar
Baber committed
136
        """Check constraints and store the target with optional metadata.
Baber's avatar
Baber committed
137

Baber's avatar
Baber committed
138
139
140
141
142
143
144
145
146
        Collision policy:
        1. If alias doesn't exist → store it
        2. If identical value → silently succeed (idempotent)
        3. If lazy placeholder + matching concrete class → replace with concrete
        4. Otherwise → raise ValueError

        Type checking:
        - Eager for concrete classes at registration time
        - Deferred for lazy placeholders until materialization
Baber's avatar
Baber committed
147
148
        """
        with self._lock:
Baber's avatar
Baber committed
149
150
151
            # Case 1: New alias
            if alias not in self._objects:
                # Type check concrete classes before storing
Baber's avatar
Baber committed
152
153
154
155
156
157
158
                if self._base_cls is not None and isinstance(target, type):
                    if not issubclass(target, self._base_cls):  # type: ignore[arg-type]
                        raise TypeError(
                            f"{target} must inherit from {self._base_cls} "
                            f"to be registered as a {self._name}"
                        )
                self._objects[alias] = target
Baber's avatar
Baber committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                if metadata:
                    self._metadata[alias] = metadata
                return

            existing = self._objects[alias]

            # Case 2: Identical value - idempotent
            if existing == target:
                return

            # Case 3: Lazy placeholder being replaced by its concrete class
            if isinstance(existing, str) and isinstance(target, type):
                mod_path, _, cls_name = existing.partition(":")
                if (
                    cls_name
                    and hasattr(target, "__module__")
                    and hasattr(target, "__name__")
                ):
                    expected_path = f"{target.__module__}:{target.__name__}"
                    if existing == expected_path:
                        self._objects[alias] = target
                        if metadata:
                            self._metadata[alias] = metadata
                        return

            # Case 4: Collision - different values
            raise ValueError(
                f"{self._name!r} '{alias}' already registered "
                f"(existing: {existing}, new: {target})"
            )

    def register(
        self,
        *aliases: str,
Baber's avatar
Baber committed
193
        obj: T | None = None,
Baber's avatar
Baber committed
194
195
        lazy: str | md.EntryPoint | None = None,
        metadata: dict[str, Any] | None = None,
Baber's avatar
Baber committed
196
197
198
199
200
201
202
203
204
    ):
        if obj and lazy:
            raise ValueError("pass obj *or* lazy")

        @functools.wraps(self.register)
        def _impl(target: T | str | md.EntryPoint):
            for a in aliases or (getattr(target, "__name__", str(target)),):
                self._check_and_store(a, target, metadata)
            return target
Baber's avatar
Baber committed
205

Baber's avatar
Baber committed
206
207
208
        # imperative call → immediately registers and returns the target
        if obj is not None or lazy is not None:
            return _impl(obj if obj is not None else lazy)  # type: ignore[arg-type]
Baber's avatar
Baber committed
209

Baber's avatar
Baber committed
210
211
        # decorator call → return function that will later receive the object
        return _impl
Baber's avatar
Baber committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    # ------------------------------------------------------------------
    # Lookup & materialisation
    # ------------------------------------------------------------------

    @lru_cache(maxsize=256)  # Bounded cache to prevent memory growth
    def _materialise(self, target: T | str | md.EntryPoint) -> T:
        """Import *target* if it is a dotted‑path string or EntryPoint."""
        if isinstance(target, str):
            mod, _, obj_name = target.partition(":")
            if not _:
                raise ValueError(
                    f"Lazy path '{target}' must be in 'module:object' form"
                )
            module = importlib.import_module(mod)
Baber's avatar
Baber committed
227
            return cast(T, getattr(module, obj_name))
Baber's avatar
Baber committed
228
        if isinstance(target, md.EntryPoint):
Baber's avatar
Baber committed
229
            return cast(T, target.load())
Baber's avatar
Baber committed
230
231
232
        return target  # concrete already

    def get(self, alias: str) -> T:
Baber's avatar
Baber committed
233
234
235
236
237
238
239
        # Fast path: check if already materialized without lock
        target = self._objects.get(alias)
        if target is not None and not isinstance(target, (str, md.EntryPoint)):
            # Already materialized and validated, return immediately
            return target

        # Slow path: acquire lock for materialization
Baber's avatar
Baber committed
240
241
242
243
244
245
246
247
248
        with self._lock:
            try:
                target = self._objects[alias]
            except KeyError as exc:
                raise KeyError(
                    f"Unknown {self._name} '{alias}'. Available: "
                    f"{', '.join(self._objects)}"
                ) from exc

Baber's avatar
Baber committed
249
            # Double-check after acquiring a lock (may have been materialized by another thread)
Baber's avatar
Baber committed
250
251
252
253
254
255
            if not isinstance(target, (str, md.EntryPoint)):
                return target

            # Materialize the lazy placeholder
            concrete: T = self._materialise(target)

Baber's avatar
Baber committed
256
            # Swap placeholder with a concrete object (with race condition check)
Baber's avatar
Baber committed
257
258
259
260
261
            if concrete is not target:
                # Final check: another thread might have materialized while we were working
                current = self._objects.get(alias)
                if isinstance(current, (str, md.EntryPoint)):
                    # Still a placeholder, safe to replace
Baber's avatar
Baber committed
262
                    self._objects[alias] = concrete
Baber's avatar
Baber committed
263
264
265
                else:
                    # Another thread already materialized it, use their result
                    concrete = current  # type: ignore[assignment]
Baber's avatar
Baber committed
266
267
268
269
270
271
272

            # Late type check (for placeholders)
            if self._base_cls is not None and not issubclass(concrete, self._base_cls):  # type: ignore[arg-type]
                raise TypeError(
                    f"{concrete} does not inherit from {self._base_cls} "
                    f"(registered under alias '{alias}')"
                )
273

Baber's avatar
Baber committed
274
275
            # Custom validation - run on materialization
            if self._validator and not self._validator(concrete):
Baber's avatar
Baber committed
276
277
278
279
                raise ValueError(
                    f"{concrete} failed custom validation for {self._name} registry "
                    f"(registered under alias '{alias}')"
                )
Baber Abbasi's avatar
Baber Abbasi committed
280

Baber's avatar
Baber committed
281
            return concrete
282

Baber's avatar
Baber committed
283
    # Mapping / dunder helpers -------------------------------------------------
lintangsutawika's avatar
lintangsutawika committed
284

Baber's avatar
Baber committed
285
286
    def __getitem__(self, alias: str) -> T:  # noqa
        return self.get(alias)
287

Baber's avatar
Baber committed
288
289
    def __iter__(self):  # noqa
        return iter(self._objects)
290

Baber's avatar
Baber committed
291
292
    def __len__(self) -> int:  # noqa
        return len(self._objects)
293

Baber's avatar
Baber committed
294
295
    def items(self):  # noqa
        return self._objects.items()
296

Baber's avatar
Baber committed
297
    # Introspection -----------------------------------------------------------
298

Baber's avatar
Baber committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    def origin(self, alias: str) -> str | None:
        obj = self._objects.get(alias)
        try:
            if isinstance(obj, str) or isinstance(obj, md.EntryPoint):
                return None  # placeholder - unknown until imported
            file = inspect.getfile(obj)  # type: ignore[arg-type]
            line = inspect.getsourcelines(obj)[1]  # type: ignore[arg-type]
            return f"{file}:{line}"
        except (
            TypeError,
            OSError,
            AttributeError,
        ):  # pragma: no cover - best-effort only
            # TypeError: object not suitable for inspect
            # OSError: file not found or accessible
            # AttributeError: object lacks expected attributes
            return None
316

Baber's avatar
Baber committed
317
318
319
320
    def get_metadata(self, alias: str) -> dict[str, Any] | None:
        """Get metadata for a registered item."""
        with self._lock:
            return self._metadata.get(alias)
321

Baber's avatar
Baber committed
322
    # Mutability --------------------------------------------------------------
323

Baber's avatar
Baber committed
324
325
326
327
328
329
    def freeze(self):
        """Make the registry *names* immutable (materialisation still works)."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                return  # already frozen
            self._objects = MappingProxyType(dict(self._objects))  # type: ignore[assignment]
330

Baber's avatar
Baber committed
331
332
333
334
335
336
337
    def clear(self):
        """Clear the registry (useful for tests). Cannot be called on frozen registries."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                raise RuntimeError("Cannot clear a frozen registry")
            self._objects.clear()
            self._metadata.clear()
Baber's avatar
Baber committed
338
            self._materialise.cache_clear()  # type: ignore[attr-defined]
339
340


Baber's avatar
Baber committed
341
342
343
# ────────────────────────────────────────────────────────────────────────
# Structured objects stored in registries
# ────────────────────────────────────────────────────────────────────────
344
345


Baber's avatar
Baber committed
346
347
348
@dataclass(frozen=True)
class MetricSpec:
    """Bundle compute fn, aggregator, and *higher‑is‑better* flag."""
349

Baber's avatar
Baber committed
350
351
352
353
354
    compute: Callable[[Any, Any], Any]
    aggregate: Callable[[Iterable[Any]], Mapping[str, float]]
    higher_is_better: bool = True
    output_type: str | None = None  # e.g., "probability", "string", "numeric"
    requires: list[str] | None = None  # Dependencies on other metrics/data
355
356


Baber's avatar
Baber committed
357
358
359
# ────────────────────────────────────────────────────────────────────────
# Concrete registries used by lm_eval
# ────────────────────────────────────────────────────────────────────────
360

Baber's avatar
Baber committed
361
from lm_eval.api.model import LM  # noqa: E402
362
363


Baber's avatar
Baber committed
364
model_registry: Registry[LM] = Registry("model", base_cls=LM)
Baber's avatar
Baber committed
365
366
367
368
369
370
371
task_registry: Registry[Callable[..., Any]] = Registry("task")
metric_registry: Registry[MetricSpec] = Registry("metric")
metric_agg_registry: Registry[Callable[[Iterable[Any]], Mapping[str, float]]] = (
    Registry("metric aggregation")
)
higher_is_better_registry: Registry[bool] = Registry("higher‑is‑better flag")
filter_registry: Registry[Callable] = Registry("filter")
372

Baber's avatar
Baber committed
373
# Default metric registry for output types
374
375
376
377
378
379
DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
380
    "multiple_choice": ["acc", "acc_norm"],
381
    "generate_until": ["exact_match"],
382
383
}

Baber's avatar
Baber committed
384
385
386
387
388
389
390

def default_metrics_for(output_type: str) -> list[str]:
    """Get default metrics for a given output type dynamically.

    This walks the metric registry to find metrics that match the output type.
    Falls back to DEFAULT_METRIC_REGISTRY if no dynamic matches found.
    """
Baber's avatar
Baber committed
391
    # First, check static defaults
Baber's avatar
Baber committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    if output_type in DEFAULT_METRIC_REGISTRY:
        return DEFAULT_METRIC_REGISTRY[output_type]

    # Walk metric registry for matching output types
    matching_metrics = []
    for name, metric_spec in metric_registry.items():
        if (
            isinstance(metric_spec, MetricSpec)
            and metric_spec.output_type == output_type
        ):
            matching_metrics.append(name)

    return matching_metrics if matching_metrics else []


# Aggregation registry - alias to the canonical registry for backward compatibility
AGGREGATION_REGISTRY = metric_agg_registry  # The registry itself is dict-like
Baber's avatar
Baber committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

# ────────────────────────────────────────────────────────────────────────
# Public helper aliases (legacy API)
# ────────────────────────────────────────────────────────────────────────

register_model = model_registry.register
get_model = model_registry.get

register_task = task_registry.register
get_task = task_registry.get


# Special handling for metric registration which uses different API
def register_metric(**kwargs):
    """Register a metric with metadata.

    Compatible with old registry API that used keyword arguments.
    """
427
428

    def decorate(fn):
Baber's avatar
Baber committed
429
430
431
432
        metric_name = kwargs.get("metric")
        if not metric_name:
            raise ValueError("metric name is required")

Baber's avatar
Baber committed
433
        # Determine aggregation function
Baber's avatar
Baber committed
434
        aggregate_fn: Callable[[Iterable[Any]], Mapping[str, float]] | None = None
Baber's avatar
Baber committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        if "aggregation" in kwargs:
            agg_name = kwargs["aggregation"]
            try:
                aggregate_fn = metric_agg_registry.get(agg_name)
            except KeyError:
                raise ValueError(f"Unknown aggregation: {agg_name}")
        else:
            # No aggregation specified - use a function that raises NotImplementedError
            def not_implemented_agg(values):
                raise NotImplementedError(
                    f"No aggregation function specified for metric '{metric_name}'. "
                    "Please specify an 'aggregation' parameter."
                )

            aggregate_fn = not_implemented_agg

Baber's avatar
Baber committed
451
452
453
        # Create MetricSpec with the function and metadata
        spec = MetricSpec(
            compute=fn,
Baber's avatar
Baber committed
454
            aggregate=aggregate_fn,
Baber's avatar
Baber committed
455
456
457
458
459
            higher_is_better=kwargs.get("higher_is_better", True),
            output_type=kwargs.get("output_type"),
            requires=kwargs.get("requires"),
        )

Baber's avatar
Baber committed
460
461
        # Use a proper registry API with metadata
        metric_registry.register(metric_name, metadata=kwargs)(spec)  # type: ignore[misc]
Baber's avatar
Baber committed
462

Baber's avatar
Baber committed
463
        # Also register in higher_is_better registry if specified
Baber's avatar
Baber committed
464
        if "higher_is_better" in kwargs:
Baber's avatar
Baber committed
465
            higher_is_better_registry.register(metric_name)(kwargs["higher_is_better"])  # type: ignore[misc]
466
467
468
469
470
471

        return fn

    return decorate


Baber's avatar
Baber committed
472
473
def get_metric(name: str, hf_evaluate_metric=False):
    """Get a metric by name, with fallback to HF evaluate."""
474
    if not hf_evaluate_metric:
Baber's avatar
Baber committed
475
476
477
478
479
480
481
482
483
        try:
            spec = metric_registry.get(name)
            if isinstance(spec, MetricSpec):
                return spec.compute
            return spec
        except KeyError:
            import logging

            logging.getLogger(__name__).warning(
484
485
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
486

Baber's avatar
Baber committed
487
    # Fallback to HF evaluate
488
    try:
Baber's avatar
Baber committed
489
490
        import evaluate as hf_evaluate

Baber Abbasi's avatar
Baber Abbasi committed
491
        metric_object = hf_evaluate.load(name)
492
493
        return metric_object.compute
    except Exception:
Baber's avatar
Baber committed
494
495
496
        import logging

        logging.getLogger(__name__).error(
497
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
498
        )
Baber's avatar
Baber committed
499
        return None
500
501


Baber's avatar
Baber committed
502
register_metric_aggregation = metric_agg_registry.register
503
504


Baber's avatar
Baber committed
505
506
507
def get_metric_aggregation(
    metric_name: str,
) -> Callable[[Iterable[Any]], Mapping[str, float]]:
Baber's avatar
Baber committed
508
    """Get the aggregation function for a metric."""
Baber's avatar
Baber committed
509
    # First, try to get from the metric registry (for metrics registered with aggregation)
Baber's avatar
Baber committed
510
511
    try:
        metric_spec = metric_registry.get(metric_name)
Baber's avatar
Baber committed
512
513
        if isinstance(metric_spec, MetricSpec) and metric_spec.aggregate:
            return metric_spec.aggregate
Baber's avatar
Baber committed
514
    except KeyError:
Baber's avatar
Baber committed
515
        pass  # Try the next registry
516

Baber's avatar
Baber committed
517
    # Fall back to metric_agg_registry (for standalone aggregations)
Baber's avatar
Baber committed
518
519
520
521
    try:
        return metric_agg_registry.get(metric_name)
    except KeyError:
        pass
522

Baber's avatar
Baber committed
523
    # If not found, raise an error
Baber's avatar
Baber committed
524
    raise KeyError(
Baber's avatar
Baber committed
525
        f"Unknown metric aggregation '{metric_name}'. Available: {list(metric_agg_registry)}"
Baber's avatar
Baber committed
526
    )
haileyschoelkopf's avatar
haileyschoelkopf committed
527
528


Baber's avatar
Baber committed
529
530
register_higher_is_better = higher_is_better_registry.register
is_higher_better = higher_is_better_registry.get
531

Baber's avatar
Baber committed
532
533
register_filter = filter_registry.register
get_filter = filter_registry.get
534

535

Baber's avatar
Baber committed
536
537
# Special handling for AGGREGATION_REGISTRY which works differently
def register_aggregation(name: str):
Baber's avatar
Baber committed
538
539
540
541
542
543
544
    """@deprecated Use metric_agg_registry.register() instead."""
    warnings.warn(
        "register_aggregation() is deprecated. Use metric_agg_registry.register() instead.",
        DeprecationWarning,
        stacklevel=2,
    )

Baber's avatar
Baber committed
545
    def decorate(fn):
Baber's avatar
Baber committed
546
        # Use the canonical registry as a single source of truth
Baber's avatar
Baber committed
547
        if name in metric_agg_registry:
Baber's avatar
Baber committed
548
549
            raise ValueError(
                f"aggregation named '{name}' conflicts with existing registered aggregation!"
550
            )
Baber's avatar
Baber committed
551
        metric_agg_registry.register(name)(fn)  # type: ignore[misc]
Baber's avatar
Baber committed
552
        return fn
553
554
555
556

    return decorate


Baber's avatar
Baber committed
557
558
def get_aggregation(name: str) -> Callable[[Iterable[Any]], Mapping[str, float]] | None:
    """@deprecated Use metric_agg_registry.get() instead."""
559
    try:
Baber's avatar
Baber committed
560
561
        # Use the canonical registry
        return metric_agg_registry.get(name)
Baber's avatar
Baber committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    except KeyError:
        import logging

        logging.getLogger(__name__).warning(
            f"{name} not a registered aggregation metric!"
        )
        return None


# ────────────────────────────────────────────────────────────────────────
# Optional PyPI entry‑point discovery - uncomment if desired
# ────────────────────────────────────────────────────────────────────────

# for _group, _reg in {
#     "lm_eval.models": model_registry,
#     "lm_eval.tasks": task_registry,
#     "lm_eval.metrics": metric_registry,
# }.items():
#     for _ep in md.entry_points(group=_group):
#         _reg.register(_ep.name, lazy=_ep)


# ────────────────────────────────────────────────────────────────────────
# Convenience
# ────────────────────────────────────────────────────────────────────────


def freeze_all() -> None:  # pragma: no cover
    """Freeze every global registry (idempotent)."""
    for _reg in (
        model_registry,
        task_registry,
        metric_registry,
        metric_agg_registry,
        higher_is_better_registry,
        filter_registry,
    ):
        _reg.freeze()


# ────────────────────────────────────────────────────────────────────────
# Backwards‑compatibility read‑only globals
# ────────────────────────────────────────────────────────────────────────

Baber's avatar
Baber committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# These are direct aliases to the registries themselves, which already implement
# the Mapping protocol and provide read-only access to users (since _objects is private).
# This ensures they always reflect the current state of the registries, including
# items registered after module import.
#
# Note: We use type: ignore because Registry doesn't formally inherit from Mapping,
# but it implements all required methods (__getitem__, __iter__, __len__, items)

MODEL_REGISTRY: Mapping[str, LM] = model_registry  # type: ignore[assignment]
TASK_REGISTRY: Mapping[str, Callable[..., Any]] = task_registry  # type: ignore[assignment]
METRIC_REGISTRY: Mapping[str, MetricSpec] = metric_registry  # type: ignore[assignment]
METRIC_AGGREGATION_REGISTRY: Mapping[str, Callable] = metric_agg_registry  # type: ignore[assignment]
HIGHER_IS_BETTER_REGISTRY: Mapping[str, bool] = higher_is_better_registry  # type: ignore[assignment]
FILTER_REGISTRY: Mapping[str, Callable] = filter_registry  # type: ignore[assignment]