registry.py 24.3 KB
Newer Older
Baber's avatar
Baber committed
1
2
3
4
5
from __future__ import annotations

import importlib
import inspect
import threading
Baber's avatar
Baber committed
6
import warnings
Baber's avatar
Baber committed
7
8
9
10
11
12
13
14
15
from collections.abc import Iterable, Mapping, MutableMapping
from dataclasses import dataclass
from functools import lru_cache
from types import MappingProxyType
from typing import (
    Any,
    Callable,
    Generic,
    TypeVar,
Baber's avatar
Baber committed
16
    overload,
Baber's avatar
Baber committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
)


try:  # Python≥3.10
    import importlib.metadata as md
except ImportError:  # pragma: no cover - fallback for 3.8/3.9 runtimes
    import importlib_metadata as md  # type: ignore

__all__ = [
    "Registry",
    "MetricSpec",
    # concrete registries
    "model_registry",
    "task_registry",
    "metric_registry",
    "metric_agg_registry",
    "higher_is_better_registry",
    "filter_registry",
    # helper
    "freeze_all",
    # Legacy compatibility
    "DEFAULT_METRIC_REGISTRY",
    "AGGREGATION_REGISTRY",
    "register_model",
    "get_model",
    "register_task",
    "get_task",
    "register_metric",
    "get_metric",
    "register_metric_aggregation",
    "get_metric_aggregation",
    "register_higher_is_better",
    "is_higher_better",
    "register_filter",
    "get_filter",
    "register_aggregation",
    "get_aggregation",
    "MODEL_REGISTRY",
    "TASK_REGISTRY",
    "METRIC_REGISTRY",
    "METRIC_AGGREGATION_REGISTRY",
    "HIGHER_IS_BETTER_REGISTRY",
    "FILTER_REGISTRY",
]

T = TypeVar("T")


# ────────────────────────────────────────────────────────────────────────
# Generic Registry
# ────────────────────────────────────────────────────────────────────────


class Registry(Generic[T]):
    """Name -> object mapping with decorator helpers and **lazy import** support."""

    #: The underlying mutable mapping (might turn into MappingProxy on freeze)
    _objects: MutableMapping[str, T | str | md.EntryPoint]

    def __init__(
        self,
        name: str,
        *,
        base_cls: type[T] | None = None,
        store: MutableMapping[str, T | str | md.EntryPoint] | None = None,
        validator: Callable[[T], bool] | None = None,
    ) -> None:
        self._name: str = name
        self._base_cls: type[T] | None = base_cls
        self._objects = store if store is not None else {}
        self._metadata: dict[
            str, dict[str, Any]
        ] = {}  # Store metadata for each registered item
        self._validator = validator  # Custom validation function
        self._lock = threading.RLock()

    # ------------------------------------------------------------------
    # Registration helpers (decorator or direct call)
    # ------------------------------------------------------------------

Baber's avatar
Baber committed
97
    @overload
Baber's avatar
Baber committed
98
99
100
    def register(
        self,
        *aliases: str,
Baber's avatar
Baber committed
101
        lazy: None = None,
Baber's avatar
Baber committed
102
103
        metadata: dict[str, Any] | None = None,
    ) -> Callable[[T], T]:
Baber's avatar
Baber committed
104
105
        """Register as decorator: @registry.register("foo")."""
        ...
Baber's avatar
Baber committed
106

Baber's avatar
Baber committed
107
108
    @overload
    def register(
Baber's avatar
Baber committed
109
        self,
Baber's avatar
Baber committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        *aliases: str,
        lazy: str | md.EntryPoint,
        metadata: dict[str, Any] | None = None,
    ) -> Callable[[Any], Any]:
        """Register lazy: registry.register("foo", lazy="a.b:C")(None)."""
        ...

    def _resolve_aliases(
        self, target: T | str | md.EntryPoint, aliases: tuple[str, ...]
    ) -> tuple[str, ...]:
        """Resolve aliases for registration."""
        if not aliases:
            return (getattr(target, "__name__", str(target)),)
        return aliases

    def _check_and_store(
        self,
        alias: str,
        target: T | str | md.EntryPoint,
        metadata: dict[str, Any] | None,
Baber's avatar
Baber committed
130
    ) -> None:
Baber's avatar
Baber committed
131
        """Check constraints and store the target with optional metadata.
Baber's avatar
Baber committed
132

Baber's avatar
Baber committed
133
134
135
136
137
138
139
140
141
        Collision policy:
        1. If alias doesn't exist → store it
        2. If identical value → silently succeed (idempotent)
        3. If lazy placeholder + matching concrete class → replace with concrete
        4. Otherwise → raise ValueError

        Type checking:
        - Eager for concrete classes at registration time
        - Deferred for lazy placeholders until materialization
Baber's avatar
Baber committed
142
143
        """
        with self._lock:
Baber's avatar
Baber committed
144
145
146
            # Case 1: New alias
            if alias not in self._objects:
                # Type check concrete classes before storing
Baber's avatar
Baber committed
147
148
149
150
151
152
153
                if self._base_cls is not None and isinstance(target, type):
                    if not issubclass(target, self._base_cls):  # type: ignore[arg-type]
                        raise TypeError(
                            f"{target} must inherit from {self._base_cls} "
                            f"to be registered as a {self._name}"
                        )
                self._objects[alias] = target
Baber's avatar
Baber committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                if metadata:
                    self._metadata[alias] = metadata
                return

            existing = self._objects[alias]

            # Case 2: Identical value - idempotent
            if existing == target:
                return

            # Case 3: Lazy placeholder being replaced by its concrete class
            if isinstance(existing, str) and isinstance(target, type):
                mod_path, _, cls_name = existing.partition(":")
                if (
                    cls_name
                    and hasattr(target, "__module__")
                    and hasattr(target, "__name__")
                ):
                    expected_path = f"{target.__module__}:{target.__name__}"
                    if existing == expected_path:
                        self._objects[alias] = target
                        if metadata:
                            self._metadata[alias] = metadata
                        return

            # Case 4: Collision - different values
            raise ValueError(
                f"{self._name!r} '{alias}' already registered "
                f"(existing: {existing}, new: {target})"
            )

    def register(
        self,
        *aliases: str,
        lazy: str | md.EntryPoint | None = None,
        metadata: dict[str, Any] | None = None,
    ) -> Callable[[T], T]:
        """``@registry.register("foo")`` **or** ``registry.register("foo", lazy="a.b:C")``.

        * If called as a **decorator**, supply an object and *no* ``lazy``.
        * If called as a **plain function** and you want lazy import, leave the
          object out and pass ``lazy=``.
        """
        # ─── direct‑call path with lazy placeholder ───
        if lazy is not None:
            for alias in self._resolve_aliases(lazy, aliases):
                self._check_and_store(alias, lazy, metadata)
            return lambda x: x  # no‑op decorator for accidental use
Baber's avatar
Baber committed
202

Baber's avatar
Baber committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        # ─── decorator path ───
        def decorator(obj: T) -> T:  # type: ignore[valid-type]
            for alias in self._resolve_aliases(obj, aliases):
                self._check_and_store(alias, obj, metadata)
            return obj

        return decorator

    # def register_bulk(
    #     self,
    #     items: dict[str, T | str | md.EntryPoint],
    #     metadata: dict[str, dict[str, Any]] | None = None,
    # ) -> None:
    #     """Register multiple items at once.
    #
    #     Args:
    #         items: Dictionary mapping aliases to objects/lazy paths
    #         metadata: Optional dictionary mapping aliases to metadata
    #     """
    #     for alias, target in items.items():
    #         meta = metadata.get(alias, {}) if metadata else {}
    #         # For lazy registration, check if it's a string or EntryPoint
    #         if isinstance(target, (str, md.EntryPoint)):
    #             self.register(alias, lazy=target, metadata=meta)(None)
    #         else:
    #             self.register(alias, metadata=meta)(target)
Baber's avatar
Baber committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    # ------------------------------------------------------------------
    # Lookup & materialisation
    # ------------------------------------------------------------------

    @lru_cache(maxsize=256)  # Bounded cache to prevent memory growth
    def _materialise(self, target: T | str | md.EntryPoint) -> T:
        """Import *target* if it is a dotted‑path string or EntryPoint."""
        if isinstance(target, str):
            mod, _, obj_name = target.partition(":")
            if not _:
                raise ValueError(
                    f"Lazy path '{target}' must be in 'module:object' form"
                )
            module = importlib.import_module(mod)
            return getattr(module, obj_name)
        if isinstance(target, md.EntryPoint):
            return target.load()
        return target  # concrete already

    def get(self, alias: str) -> T:
Baber's avatar
Baber committed
250
251
252
253
254
255
256
        # Fast path: check if already materialized without lock
        target = self._objects.get(alias)
        if target is not None and not isinstance(target, (str, md.EntryPoint)):
            # Already materialized and validated, return immediately
            return target

        # Slow path: acquire lock for materialization
Baber's avatar
Baber committed
257
258
259
260
261
262
263
264
265
        with self._lock:
            try:
                target = self._objects[alias]
            except KeyError as exc:
                raise KeyError(
                    f"Unknown {self._name} '{alias}'. Available: "
                    f"{', '.join(self._objects)}"
                ) from exc

Baber's avatar
Baber committed
266
267
268
269
270
271
272
273
274
275
276
277
278
            # Double-check after acquiring lock (may have been materialized by another thread)
            if not isinstance(target, (str, md.EntryPoint)):
                return target

            # Materialize the lazy placeholder
            concrete: T = self._materialise(target)

            # Swap placeholder with concrete object (with race condition check)
            if concrete is not target:
                # Final check: another thread might have materialized while we were working
                current = self._objects.get(alias)
                if isinstance(current, (str, md.EntryPoint)):
                    # Still a placeholder, safe to replace
Baber's avatar
Baber committed
279
                    self._objects[alias] = concrete
Baber's avatar
Baber committed
280
281
282
                else:
                    # Another thread already materialized it, use their result
                    concrete = current  # type: ignore[assignment]
Baber's avatar
Baber committed
283
284
285
286
287
288
289

            # Late type check (for placeholders)
            if self._base_cls is not None and not issubclass(concrete, self._base_cls):  # type: ignore[arg-type]
                raise TypeError(
                    f"{concrete} does not inherit from {self._base_cls} "
                    f"(registered under alias '{alias}')"
                )
290

Baber's avatar
Baber committed
291
292
            # Custom validation - run on materialization
            if self._validator and not self._validator(concrete):
Baber's avatar
Baber committed
293
294
295
296
                raise ValueError(
                    f"{concrete} failed custom validation for {self._name} registry "
                    f"(registered under alias '{alias}')"
                )
Baber Abbasi's avatar
Baber Abbasi committed
297

Baber's avatar
Baber committed
298
            return concrete
299

Baber's avatar
Baber committed
300
    # Mapping / dunder helpers -------------------------------------------------
lintangsutawika's avatar
lintangsutawika committed
301

Baber's avatar
Baber committed
302
303
    def __getitem__(self, alias: str) -> T:  # noqa
        return self.get(alias)
304

Baber's avatar
Baber committed
305
306
    def __iter__(self):  # noqa
        return iter(self._objects)
307

Baber's avatar
Baber committed
308
309
    def __len__(self) -> int:  # noqa
        return len(self._objects)
310

Baber's avatar
Baber committed
311
312
    def items(self):  # noqa
        return self._objects.items()
313

Baber's avatar
Baber committed
314
    # Introspection -----------------------------------------------------------
315

Baber's avatar
Baber committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def origin(self, alias: str) -> str | None:
        obj = self._objects.get(alias)
        try:
            if isinstance(obj, str) or isinstance(obj, md.EntryPoint):
                return None  # placeholder - unknown until imported
            file = inspect.getfile(obj)  # type: ignore[arg-type]
            line = inspect.getsourcelines(obj)[1]  # type: ignore[arg-type]
            return f"{file}:{line}"
        except (
            TypeError,
            OSError,
            AttributeError,
        ):  # pragma: no cover - best-effort only
            # TypeError: object not suitable for inspect
            # OSError: file not found or accessible
            # AttributeError: object lacks expected attributes
            return None
333

Baber's avatar
Baber committed
334
335
336
337
    def get_metadata(self, alias: str) -> dict[str, Any] | None:
        """Get metadata for a registered item."""
        with self._lock:
            return self._metadata.get(alias)
338

Baber's avatar
Baber committed
339
    # Mutability --------------------------------------------------------------
340

Baber's avatar
Baber committed
341
342
343
344
345
346
    def freeze(self):
        """Make the registry *names* immutable (materialisation still works)."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                return  # already frozen
            self._objects = MappingProxyType(dict(self._objects))  # type: ignore[assignment]
347

Baber's avatar
Baber committed
348
349
350
351
352
353
354
    def clear(self):
        """Clear the registry (useful for tests). Cannot be called on frozen registries."""
        with self._lock:
            if isinstance(self._objects, MappingProxyType):
                raise RuntimeError("Cannot clear a frozen registry")
            self._objects.clear()
            self._metadata.clear()
Baber's avatar
Baber committed
355
            self._materialise.cache_clear()  # type: ignore[attr-defined]
356
357


Baber's avatar
Baber committed
358
359
360
# ────────────────────────────────────────────────────────────────────────
# Structured objects stored in registries
# ────────────────────────────────────────────────────────────────────────
361
362


Baber's avatar
Baber committed
363
364
365
@dataclass(frozen=True)
class MetricSpec:
    """Bundle compute fn, aggregator, and *higher‑is‑better* flag."""
366

Baber's avatar
Baber committed
367
368
369
370
371
    compute: Callable[[Any, Any], Any]
    aggregate: Callable[[Iterable[Any]], Mapping[str, float]]
    higher_is_better: bool = True
    output_type: str | None = None  # e.g., "probability", "string", "numeric"
    requires: list[str] | None = None  # Dependencies on other metrics/data
372
373


Baber's avatar
Baber committed
374
375
376
# ────────────────────────────────────────────────────────────────────────
# Concrete registries used by lm_eval
# ────────────────────────────────────────────────────────────────────────
377

Baber's avatar
Baber committed
378
from lm_eval.api.model import LM  # noqa: E402
379
380


Baber's avatar
Baber committed
381
model_registry: Registry[LM] = Registry("model", base_cls=LM)
Baber's avatar
Baber committed
382
383
384
385
386
387
388
task_registry: Registry[Callable[..., Any]] = Registry("task")
metric_registry: Registry[MetricSpec] = Registry("metric")
metric_agg_registry: Registry[Callable[[Iterable[Any]], Mapping[str, float]]] = (
    Registry("metric aggregation")
)
higher_is_better_registry: Registry[bool] = Registry("higher‑is‑better flag")
filter_registry: Registry[Callable] = Registry("filter")
389

Baber's avatar
Baber committed
390
# Default metric registry for output types
391
392
393
394
395
396
DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
397
    "multiple_choice": ["acc", "acc_norm"],
398
    "generate_until": ["exact_match"],
399
400
}

Baber's avatar
Baber committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

def default_metrics_for(output_type: str) -> list[str]:
    """Get default metrics for a given output type dynamically.

    This walks the metric registry to find metrics that match the output type.
    Falls back to DEFAULT_METRIC_REGISTRY if no dynamic matches found.
    """
    # First check static defaults
    if output_type in DEFAULT_METRIC_REGISTRY:
        return DEFAULT_METRIC_REGISTRY[output_type]

    # Walk metric registry for matching output types
    matching_metrics = []
    for name, metric_spec in metric_registry.items():
        if (
            isinstance(metric_spec, MetricSpec)
            and metric_spec.output_type == output_type
        ):
            matching_metrics.append(name)

    return matching_metrics if matching_metrics else []


# Aggregation registry - alias to the canonical registry for backward compatibility
AGGREGATION_REGISTRY = metric_agg_registry  # The registry itself is dict-like
Baber's avatar
Baber committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

# ────────────────────────────────────────────────────────────────────────
# Public helper aliases (legacy API)
# ────────────────────────────────────────────────────────────────────────

register_model = model_registry.register
get_model = model_registry.get

register_task = task_registry.register
get_task = task_registry.get


# Special handling for metric registration which uses different API
def register_metric(**kwargs):
    """Register a metric with metadata.

    Compatible with old registry API that used keyword arguments.
    """
444
445

    def decorate(fn):
Baber's avatar
Baber committed
446
447
448
449
        metric_name = kwargs.get("metric")
        if not metric_name:
            raise ValueError("metric name is required")

Baber's avatar
Baber committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        # Determine aggregation function
        aggregate_fn = None
        if "aggregation" in kwargs:
            agg_name = kwargs["aggregation"]
            try:
                aggregate_fn = metric_agg_registry.get(agg_name)
            except KeyError:
                raise ValueError(f"Unknown aggregation: {agg_name}")
        else:
            # No aggregation specified - use a function that raises NotImplementedError
            def not_implemented_agg(values):
                raise NotImplementedError(
                    f"No aggregation function specified for metric '{metric_name}'. "
                    "Please specify an 'aggregation' parameter."
                )

            aggregate_fn = not_implemented_agg

Baber's avatar
Baber committed
468
469
470
        # Create MetricSpec with the function and metadata
        spec = MetricSpec(
            compute=fn,
Baber's avatar
Baber committed
471
            aggregate=aggregate_fn,
Baber's avatar
Baber committed
472
473
474
475
476
            higher_is_better=kwargs.get("higher_is_better", True),
            output_type=kwargs.get("output_type"),
            requires=kwargs.get("requires"),
        )

Baber's avatar
Baber committed
477
478
        # Use proper registry API with metadata
        metric_registry.register(metric_name, metadata=kwargs)(spec)
Baber's avatar
Baber committed
479

Baber's avatar
Baber committed
480
        # Also register in higher_is_better registry if specified
Baber's avatar
Baber committed
481
        if "higher_is_better" in kwargs:
Baber's avatar
Baber committed
482
            higher_is_better_registry.register(metric_name)(kwargs["higher_is_better"])
483
484
485
486
487
488

        return fn

    return decorate


Baber's avatar
Baber committed
489
490
def get_metric(name: str, hf_evaluate_metric=False):
    """Get a metric by name, with fallback to HF evaluate."""
491
    if not hf_evaluate_metric:
Baber's avatar
Baber committed
492
493
494
495
496
497
498
499
500
        try:
            spec = metric_registry.get(name)
            if isinstance(spec, MetricSpec):
                return spec.compute
            return spec
        except KeyError:
            import logging

            logging.getLogger(__name__).warning(
501
502
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
503

Baber's avatar
Baber committed
504
    # Fallback to HF evaluate
505
    try:
Baber's avatar
Baber committed
506
507
        import evaluate as hf_evaluate

Baber Abbasi's avatar
Baber Abbasi committed
508
        metric_object = hf_evaluate.load(name)
509
510
        return metric_object.compute
    except Exception:
Baber's avatar
Baber committed
511
512
513
        import logging

        logging.getLogger(__name__).error(
514
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
515
        )
Baber's avatar
Baber committed
516
        return None
517
518


Baber's avatar
Baber committed
519
register_metric_aggregation = metric_agg_registry.register
520
521


Baber's avatar
Baber committed
522
523
524
def get_metric_aggregation(metric_name: str):
    """Get the aggregation function for a metric."""
    # First try to get from metric registry (for metrics registered with aggregation)
Baber's avatar
Baber committed
525
526
    try:
        metric_spec = metric_registry.get(metric_name)
Baber's avatar
Baber committed
527
528
        if isinstance(metric_spec, MetricSpec) and metric_spec.aggregate:
            return metric_spec.aggregate
Baber's avatar
Baber committed
529
530
    except KeyError:
        pass  # Try next registry
531

Baber's avatar
Baber committed
532
    # Fall back to metric_agg_registry (for standalone aggregations)
Baber's avatar
Baber committed
533
534
535
536
    try:
        return metric_agg_registry.get(metric_name)
    except KeyError:
        pass
537

Baber's avatar
Baber committed
538
539
    # If not found, raise error
    raise KeyError(
Baber's avatar
Baber committed
540
        f"Unknown metric aggregation '{metric_name}'. Available: {list(metric_agg_registry)}"
Baber's avatar
Baber committed
541
    )
haileyschoelkopf's avatar
haileyschoelkopf committed
542
543


Baber's avatar
Baber committed
544
545
register_higher_is_better = higher_is_better_registry.register
is_higher_better = higher_is_better_registry.get
546

Baber's avatar
Baber committed
547
548
register_filter = filter_registry.register
get_filter = filter_registry.get
549

550

Baber's avatar
Baber committed
551
552
# Special handling for AGGREGATION_REGISTRY which works differently
def register_aggregation(name: str):
Baber's avatar
Baber committed
553
554
555
556
557
558
559
    """@deprecated Use metric_agg_registry.register() instead."""
    warnings.warn(
        "register_aggregation() is deprecated. Use metric_agg_registry.register() instead.",
        DeprecationWarning,
        stacklevel=2,
    )

Baber's avatar
Baber committed
560
    def decorate(fn):
Baber's avatar
Baber committed
561
562
        # Use the canonical registry as single source of truth
        if name in metric_agg_registry:
Baber's avatar
Baber committed
563
564
            raise ValueError(
                f"aggregation named '{name}' conflicts with existing registered aggregation!"
565
            )
Baber's avatar
Baber committed
566
        metric_agg_registry.register(name)(fn)
Baber's avatar
Baber committed
567
        return fn
568
569
570
571

    return decorate


Baber's avatar
Baber committed
572
573
def get_aggregation(name: str) -> Callable[[Iterable[Any]], Mapping[str, float]] | None:
    """@deprecated Use metric_agg_registry.get() instead."""
574
    try:
Baber's avatar
Baber committed
575
576
        # Use the canonical registry
        return metric_agg_registry.get(name)
Baber's avatar
Baber committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    except KeyError:
        import logging

        logging.getLogger(__name__).warning(
            f"{name} not a registered aggregation metric!"
        )
        return None


# ────────────────────────────────────────────────────────────────────────
# Optional PyPI entry‑point discovery - uncomment if desired
# ────────────────────────────────────────────────────────────────────────

# for _group, _reg in {
#     "lm_eval.models": model_registry,
#     "lm_eval.tasks": task_registry,
#     "lm_eval.metrics": metric_registry,
# }.items():
#     for _ep in md.entry_points(group=_group):
#         _reg.register(_ep.name, lazy=_ep)


# ────────────────────────────────────────────────────────────────────────
# Convenience
# ────────────────────────────────────────────────────────────────────────


def freeze_all() -> None:  # pragma: no cover
    """Freeze every global registry (idempotent)."""
    for _reg in (
        model_registry,
        task_registry,
        metric_registry,
        metric_agg_registry,
        higher_is_better_registry,
        filter_registry,
    ):
        _reg.freeze()


# ────────────────────────────────────────────────────────────────────────
# Backwards‑compatibility read‑only globals
# ────────────────────────────────────────────────────────────────────────

Baber's avatar
Baber committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# These are direct aliases to the registries themselves, which already implement
# the Mapping protocol and provide read-only access to users (since _objects is private).
# This ensures they always reflect the current state of the registries, including
# items registered after module import.
#
# Note: We use type: ignore because Registry doesn't formally inherit from Mapping,
# but it implements all required methods (__getitem__, __iter__, __len__, items)

MODEL_REGISTRY: Mapping[str, LM] = model_registry  # type: ignore[assignment]
TASK_REGISTRY: Mapping[str, Callable[..., Any]] = task_registry  # type: ignore[assignment]
METRIC_REGISTRY: Mapping[str, MetricSpec] = metric_registry  # type: ignore[assignment]
METRIC_AGGREGATION_REGISTRY: Mapping[str, Callable] = metric_agg_registry  # type: ignore[assignment]
HIGHER_IS_BETTER_REGISTRY: Mapping[str, bool] = higher_is_better_registry  # type: ignore[assignment]
FILTER_REGISTRY: Mapping[str, Callable] = filter_registry  # type: ignore[assignment]