registry.py 5.24 KB
Newer Older
1
import logging
2
from typing import Callable, Dict, Union
3

Baber Abbasi's avatar
Baber Abbasi committed
4
5
import evaluate as hf_evaluate

6
from lm_eval.api.model import LM
7

lintangsutawika's avatar
lintangsutawika committed
8

Lintang Sutawika's avatar
Lintang Sutawika committed
9
eval_logger = logging.getLogger(__name__)
10
11
12
13
14
15
16
17
18
19

MODEL_REGISTRY = {}


def register_model(*names):
    # either pass a list or a single alias.
    # function receives them as a tuple of strings

    def decorate(cls):
        for name in names:
Baber Abbasi's avatar
Baber Abbasi committed
20
21
22
            assert issubclass(cls, LM), (
                f"Model '{name}' ({cls.__name__}) must extend LM class"
            )
23

Baber Abbasi's avatar
Baber Abbasi committed
24
25
26
            assert name not in MODEL_REGISTRY, (
                f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."
            )
27
28
29
30
31
32
33
34

            MODEL_REGISTRY[name] = cls
        return cls

    return decorate


def get_model(model_name):
haileyschoelkopf's avatar
haileyschoelkopf committed
35
36
37
    try:
        return MODEL_REGISTRY[model_name]
    except KeyError:
38
39
40
        raise ValueError(
            f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}"
        )
41
42
43
44


TASK_REGISTRY = {}
GROUP_REGISTRY = {}
45
ALL_TASKS = set()
46
47
48
49
50
func2task_index = {}


def register_task(name):
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
51
52
53
        assert name not in TASK_REGISTRY, (
            f"task named '{name}' conflicts with existing registered task!"
        )
54
55

        TASK_REGISTRY[name] = fn
56
        ALL_TASKS.add(name)
57
58
59
60
61
62
63
64
65
66
67
68
69
        func2task_index[fn.__name__] = name
        return fn

    return decorate


def register_group(name):
    def decorate(fn):
        func_name = func2task_index[fn.__name__]
        if name in GROUP_REGISTRY:
            GROUP_REGISTRY[name].append(func_name)
        else:
            GROUP_REGISTRY[name] = [func_name]
70
            ALL_TASKS.add(name)
71
72
73
74
75
76
        return fn

    return decorate


OUTPUT_TYPE_REGISTRY = {}
77
78
METRIC_REGISTRY = {}
METRIC_AGGREGATION_REGISTRY = {}
Baber Abbasi's avatar
Baber Abbasi committed
79
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {}
80
HIGHER_IS_BETTER_REGISTRY = {}
81
FILTER_REGISTRY = {}
82
83
84
85
86
87
88

DEFAULT_METRIC_REGISTRY = {
    "loglikelihood": [
        "perplexity",
        "acc",
    ],
    "loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"],
89
    "multiple_choice": ["acc", "acc_norm"],
90
    "generate_until": ["exact_match"],
91
92
93
94
95
96
97
98
99
100
101
102
}


def register_metric(**args):
    # TODO: do we want to enforce a certain interface to registered metrics?
    def decorate(fn):
        assert "metric" in args
        name = args["metric"]

        for key, registry in [
            ("metric", METRIC_REGISTRY),
            ("higher_is_better", HIGHER_IS_BETTER_REGISTRY),
103
            ("aggregation", METRIC_AGGREGATION_REGISTRY),
104
105
106
        ]:
            if key in args:
                value = args[key]
Baber Abbasi's avatar
Baber Abbasi committed
107
108
109
                assert value not in registry, (
                    f"{key} named '{value}' conflicts with existing registered {key}!"
                )
110
111
112
113
114
115
116
117
118
119
120
121
122

                if key == "metric":
                    registry[name] = fn
                elif key == "aggregation":
                    registry[name] = AGGREGATION_REGISTRY[value]
                else:
                    registry[name] = value

        return fn

    return decorate


Baber Abbasi's avatar
Baber Abbasi committed
123
def get_metric(name: str, hf_evaluate_metric=False) -> Callable:
124
125
126
127
128
129
130
    if not hf_evaluate_metric:
        if name in METRIC_REGISTRY:
            return METRIC_REGISTRY[name]
        else:
            eval_logger.warning(
                f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..."
            )
Chris's avatar
Chris committed
131

132
    try:
Baber Abbasi's avatar
Baber Abbasi committed
133
        metric_object = hf_evaluate.load(name)
134
135
136
137
        return metric_object.compute
    except Exception:
        eval_logger.error(
            f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric",
138
139
140
        )


Baber Abbasi's avatar
Baber Abbasi committed
141
def register_aggregation(name: str):
142
    def decorate(fn):
Baber Abbasi's avatar
Baber Abbasi committed
143
144
145
        assert name not in AGGREGATION_REGISTRY, (
            f"aggregation named '{name}' conflicts with existing registered aggregation!"
        )
146
147
148
149
150
151
152

        AGGREGATION_REGISTRY[name] = fn
        return fn

    return decorate


Baber Abbasi's avatar
Baber Abbasi committed
153
def get_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
154
155
156
    try:
        return AGGREGATION_REGISTRY[name]
    except KeyError:
157
        eval_logger.warning(f"{name} not a registered aggregation metric!")
haileyschoelkopf's avatar
haileyschoelkopf committed
158
159


Baber Abbasi's avatar
Baber Abbasi committed
160
def get_metric_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
161
162
163
    try:
        return METRIC_AGGREGATION_REGISTRY[name]
    except KeyError:
164
        eval_logger.warning(f"{name} metric is not assigned a default aggregation!")
165
166


Baber Abbasi's avatar
Baber Abbasi committed
167
def is_higher_better(metric_name) -> bool:
haileyschoelkopf's avatar
haileyschoelkopf committed
168
169
170
    try:
        return HIGHER_IS_BETTER_REGISTRY[metric_name]
    except KeyError:
171
172
173
        eval_logger.warning(
            f"higher_is_better not specified for metric '{metric_name}'!"
        )
174
175
176
177
178
179
180
181
182
183
184
185
186
187


def register_filter(name):
    def decorate(cls):
        if name in FILTER_REGISTRY:
            eval_logger.info(
                f"Registering filter `{name}` that is already in Registry {FILTER_REGISTRY}"
            )
        FILTER_REGISTRY[name] = cls
        return cls

    return decorate


188
def get_filter(filter_name: Union[str, Callable]) -> Callable:
189
190
    try:
        return FILTER_REGISTRY[filter_name]
191
192
193
194
195
196
    except KeyError as e:
        if callable(filter_name):
            return filter_name
        else:
            eval_logger.warning(f"filter `{filter_name}` is not registered!")
            raise e