evaluator.py 27.1 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
18
19
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
20
    get_subtask_list,
21
    get_task_list,
22
    prepare_print_tasks,
23
24
25
    print_writeout,
    run_task_tests,
)
26
from lm_eval.logging.utils import add_env_info, get_git_commit_hash
27
28
29
30
31
32
from lm_eval.tasks import (
    ConfigurableGroup,
    ConfigurableTask,
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
39
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
40

Fabrizio Milo's avatar
Fabrizio Milo committed
41

42
43
44
45
46
if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task


47
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
48
49
def simple_evaluate(
    model,
50
51
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
52
53
54
55
56
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
57
58
59
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
60
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
65
66
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
67
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
68
    predict_only: bool = False,
69
70
71
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
72
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
73
):
74
    """Instantiate and evaluate a model on a list of tasks.
75

76
77
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
78
79
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
80
        Ignored if `model` argument is a LM object.
81
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
82
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
83
84
    :param num_fewshot: int
        Number of examples in few-shot context
85
    :param batch_size: int or str, optional
86
        Batch size for model
87
88
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
89
    :param device: str, optional
90
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
91
92
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
93
94
95
96
97
98
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
99
100
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
101
102
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
103
104
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
105
    :param write_out: bool
106
107
108
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
109
110
111
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
112
113
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
114
115
116
117
118
119
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
120
121
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
122

123
    :return
124
        Dictionary of results
125
    """
126
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
127
    start_date = time.time()
128

129
130
131
132
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

133
    seed_message = []
134
135
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
136
        seed_message.append(f"Setting random seed to {random_seed}")
137
138
139
        random.seed(random_seed)

    if numpy_random_seed is not None:
140
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
141
142
143
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
144
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
145
146
        torch.manual_seed(torch_random_seed)

147
148
149
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

150
151
    if tasks is None:
        tasks = []
152
153
154
155
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
156

lintangsutawika's avatar
lintangsutawika committed
157
158
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
159
        eval_logger.warning(
160
161
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
162
        )
lintangsutawika's avatar
lintangsutawika committed
163
164
165
        if gen_kwargs == "":
            gen_kwargs = None

166
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
167
        if model_args is None:
168
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
169
            model_args = ""
170

171
        if isinstance(model_args, dict):
172
173
174
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
175
176
177
178
179
180
181
182
183
184
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
185
186
187
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
188
189
190
191
192
193
194
195
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
196
    else:
197
198
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
199
        eval_logger.info("Using pre-initialized model")
200
        lm = model
201

haileyschoelkopf's avatar
haileyschoelkopf committed
202
    if use_cache is not None:
203
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
204
205
206
207
208
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
209
210
211
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
212
213
        )

214
215
216
    if check_integrity:
        run_task_tests(task_list=tasks)

217
218
219
220
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
221

lintangsutawika's avatar
lintangsutawika committed
222
    def _adjust_config(task_dict, predict_only):
223
224
225
226
227
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
228
                    **{task_name: _adjust_config(task_obj, predict_only)},
229
                }
Stephen Hogg's avatar
Stephen Hogg committed
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
            else:
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
257
258
259
260
                    task_obj.set_fewshot_seed(seed=fewshot_random_seed)
                    eval_logger.info(
                        f"Setting fewshot random generator seed to {fewshot_random_seed}"
                    )
261
262
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
263
264
265
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
266
                        task_obj.set_config(key="num_fewshot", value=0)
267

268
269
270
271
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

lintangsutawika's avatar
lintangsutawika committed
272
    task_dict = _adjust_config(task_dict, predict_only)
273
274
275
276
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
277
278
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
279
        bootstrap_iters=bootstrap_iters,
280
        write_out=write_out,
281
        log_samples=True if predict_only else log_samples,
282
        verbosity=verbosity,
283
    )
284

285
    if lm.rank == 0:
286
287
288
289
290
291
292
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

293
294
        # add info about the model and few shot config
        results["config"] = {
295
            "model": model_name,
296
297
            "model_args": model_args,
        }
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
313
314
315
316
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
317
318
            }
        )
319
        results["git_hash"] = get_git_commit_hash()
320
        results["date"] = start_date
321
        add_env_info(results)  # additional environment info to results
322
323
324
        return results
    else:
        return None
325

Leo Gao's avatar
Leo Gao committed
326

327
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
328
def evaluate(
329
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
330
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
331
    limit: Optional[int] = None,
332
333
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
334
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
335
336
    write_out: bool = False,
    log_samples: bool = True,
337
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
338
):
339
340
341
342
343
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
344
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
345
346
347
348
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
349
    :param write_out: bool
350
351
352
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
353
354
355
    :return
        Dictionary of results
    """
356

357
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
358

359
    # tracks all Instances/requests a model must generate output on.
360
    requests = defaultdict(list)
361
362
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
363
    padding_requests = defaultdict(int)
364

365
    # get lists of group hierarchy and each type of request
366
    eval_tasks = get_task_list(task_dict)
367
    if not log_samples:
368
        if not all(
369
370
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
371
372
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
373
374
375
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
376
377
378
379
380
381
382
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
        )
383
        eval_logger.debug(
384
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
385
386
        )
        if write_out:
387
            print_writeout(task)
388
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
389
390
391
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
392
393

        if lm.world_size > 1:
394
395
396
397
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
398
399
400
401
402
403
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
404
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
405
            numpad = max(gathered_item) - gathered_item[lm.rank]
406
407
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
408

409
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
410
411
    # execute each type of request
    for reqtype, reqs in requests.items():
412
        eval_logger.info(f"Running {reqtype} requests")
413
414
415
416
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
417

418
419
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
420
421
                cloned_reqs.extend([req] * req.repeats)

422
423
424
425
426
427
428
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

429
430
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
431

432
433
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
434
435
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
436
437
    for task_output in eval_tasks:
        task = task_output.task
438
439
        task.apply_filters()

440
441
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
442
        # TODO: make it possible to use a different metric per filter
443
        # Pre-process task.instances to group by doc_id
444
        instances_by_doc_id = defaultdict(list)
445
446
447
448
449
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
450
        # iterate over different filters used
451
452
453
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
454
            )
455
            for doc_id, doc in doc_iterator:
456
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
457
                metrics = task.process_results(
458
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
459
                )
460
461
462
463
464
465
466
467
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
468
469
470
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
471
472
473
474
475
476
477
478
479
480
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
481
482
                    }
                    example.update(metrics)
483
                    task_output.logged_samples.append(example)
484
                for metric, value in metrics.items():
485
                    task_output.sample_metrics[(metric, filter_key)].append(value)
486

487
488
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
489
        # first gather logged samples across all ranks
490
491
492
493
494
495
496
497
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
498
                )
499

500
501
502
503
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
504

505
506
507
508
509
510
511
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
512
                )
513
514
515
516
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
517

518
    if RANK == 0:
519
520
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
521
522
523
524
525
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
        results, samples, configs, versions, num_fewshot = consolidate_results(
            eval_tasks
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
526

527
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
528
        if bool(results):
529

530
531
            def process_group(
                results,
lintangsutawika's avatar
lintangsutawika committed
532
                versions,
533
534
535
                task_dict,
                task_root=None,
                show_group_table=False,
536
                task_aggregation_list=None,
537
            ):
538
539
540
                if task_root is None:
                    task_root = {}

541
542
                if task_aggregation_list is None:
                    task_aggregation_list = {}
543
544

                for group_or_task, group_or_task_info in task_dict.items():
545
                    # Convert to string
546
547
                    if isinstance(group_or_task, ConfigurableGroup):
                        group_config = group_or_task.config
lintangsutawika's avatar
lintangsutawika committed
548
                        group_or_task = group_or_task.task_id
549
550
                    else:
                        group_config = None
551

552
553
                    if isinstance(group_or_task_info, ConfigurableTask):
                        if task_root:
554
                            task_aggregation_list.setdefault(task_root, []).append(
lintangsutawika's avatar
lintangsutawika committed
555
                                group_or_task_info.task_id
556
                            )
557
                    else:
lintangsutawika's avatar
lintangsutawika committed
558
559
560
561
                        (
                            results,
                            versions,
                            show_group_table,
562
                            _task_aggregation_list,
lintangsutawika's avatar
lintangsutawika committed
563
                        ) = process_group(
564
                            results,
lintangsutawika's avatar
lintangsutawika committed
565
                            versions,
566
567
568
                            group_or_task_info,
                            group_or_task,
                            show_group_table,
569
                            task_aggregation_list,
570
                        )
571
                        if task_root:
572
573
                            task_aggregation_list.setdefault(task_root, []).extend(
                                task_aggregation_list.get(group_or_task, [])
574
                            )
575

lintangsutawika's avatar
lintangsutawika committed
576
577
578
                        if (group_config is None) or (
                            group_config["aggregate_metric"] is False
                        ):
579
580
581
582
583
584
585
                            results[group_or_task][" "] = " "
                            continue

                        show_group_table = (
                            show_group_table | group_config["aggregate_metric"]
                        )

586
                        task_list = _task_aggregation_list[group_or_task]
587
588
589
590
591
                        metric_list = list(
                            {
                                key
                                for task in task_list
                                for key in results[task].keys()
592
                                if "_stderr" not in key
593
                                and key not in ["task", "alias", "samples"]
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
                            }
                        )
                        for metric in metric_list:
                            stderr = "_stderr,".join(metric.split(","))

                            # gather metrics, sizes, and stderrs from subtasks
                            metrics = [
                                results[task][metric]
                                for task in task_list
                                if metric in results[task]
                            ]  # TODO: copy?
                            stderrs = [
                                results[task][stderr]
                                for task in task_list
                                if stderr in results[task]
                            ]
                            sizes = [
                                results[task]["samples"]
                                for task in task_list
                                if metric in results[task]
                            ]

                            # compute group's pooled metric and stderr
617
                            results[group_or_task][
618
619
620
621
622
623
624
625
                                metric
                            ] = lm_eval.api.metrics.aggregate_subtask_metrics(
                                metrics,
                                sizes,
                                group_config["weight_by_size"],
                            )
                            # TODO: calculate grouped metric using aggregation fn
                            if "N/A" in stderrs:
626
                                results[group_or_task][stderr] = "N/A"
627
                            else:
628
                                results[group_or_task][
629
                                    stderr
630
631
632
                                ] = lm_eval.api.metrics.pooled_sample_stderr(
                                    stderrs, sizes
                                )
633
634
635
636
                                # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                                # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                                # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)

637
                            results[group_or_task]["samples"] = sum(sizes)
lintangsutawika's avatar
lintangsutawika committed
638
                            versions[group_or_task] = group_config["version"]
639
                return results, versions, show_group_table, task_aggregation_list
640

641
            results, versions, show_group_table, *_ = process_group(
lintangsutawika's avatar
lintangsutawika committed
642
                results, versions, task_dict
643
644
            )

645
        results_agg, group_agg = prepare_print_tasks(task_dict, results)
646
647
        subtask_list = get_subtask_list(task_dict)

648
        results_dict = {
649
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
650
651
652
653
654
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
655
            "group_subtasks": dict(reversed(subtask_list.items())),
656
657
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
658
            "n-shot": dict(sorted(num_fewshot.items())),
659
660
661
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
662
663
664
665
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
666
667
668
                }
                for task_output in eval_tasks
            },
669
        }
670
671
672
673
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
674

675
676
    else:
        return None
677
678
679
680


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
681
682
683
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
684
685
686
    }

    return request_caching_args