task.py 36.2 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    template_aliases: str = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
69
    gold_alias: Union[Callable, str] = None
70
    use_prompt: str = None
71
    description: str = ""
72
73
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
74
    # runtime configuration options
75
76
    num_fewshot: int = 0
    batch_size: int = 1
77
    # scoring options
78
79
    metric_list: str = None
    output_type: str = "greedy_until"
80
    generation_kwargs: dict = None
81
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
82
    filter_list: Union[str, list] = None
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85

lintangsutawika's avatar
lintangsutawika committed
86
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

88
89
90
91
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
92
93
94
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
95

96
97
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
98

99
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
100
                self.gold_alias = self.template_aliases + self.gold_alias
101

Lintang Sutawika's avatar
Lintang Sutawika committed
102
103
104
105
106
107
108
109
110
111
112
113
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
116
117
118
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
119
                    "until": None
120
121
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
124
                    "do_sample": False,
                    "temperature": 0.0,
                }
125

haileyschoelkopf's avatar
haileyschoelkopf committed
126
127
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

128
129
130
    def __getitem__(self, item):
        return getattr(self, item)

131
    def to_dict(self):
132
133
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
134
        Used for dumping results alongside full task configuration
135

haileyschoelkopf's avatar
haileyschoelkopf committed
136
137
138
139
140
141
142
143
144
145
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
146
147
148
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
149
        return cfg_dict
150

151
152
153
154
155
156
157
158
159
160
161
162

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
163

164
165
166
167
168
169
170
171
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
207
        self._config = TaskConfig(**config) if config else TaskConfig()
208
209
210

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
211
            for name, components in self._config.get(
212
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
213
            ):
214
215
216
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
217
218
219
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
246
247
248
249
250
251
252
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

290
291
292
293
294
295
296
297
298
299
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
300
            eval_logger.warning(
301
                "has_training_docs and has_validation_docs are False"
302
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
303
            )
304
305
            return self.test_docs()

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

344
    def build_all_requests(self, limit=None, rank=None, world_size=None):
345
346
347
348
349
350
351
352
353
354
355
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
356
357
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
358
        ):
359
            # sample fewshot context #TODO: need to offset doc_id by rank now!
360
361
362
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
363

haileyschoelkopf's avatar
haileyschoelkopf committed
364
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
365
366
367
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
368
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
369
            )
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
395
            The number of times each instance in a dataset is inferred on. Defaults to 1,
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
431
432
433
434
435
436
437
438
439
440
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
461
462
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
463
        else:
lintangsutawika's avatar
lintangsutawika committed
464
465
466
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
467
468
469
470
471
472

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
473
474
475
476
477
478
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
479

480
    def dump_config(self):
481
        """Returns a dictionary representing the task's config.
482
483
484
485
486
487
488
489

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

490
491
492

class ConfigurableTask(Task):

493
    VERSION = "Yaml"
494
    OUTPUT_TYPE = None
495
    CONFIG = None
496
497
498
499

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
500
        # Get pre-configured attributes
501
        self._config = self.CONFIG
502

503
504
        # Use new configurations if there was no preconfiguration
        if self._config is None:
505
            self._config = TaskConfig(**config)
506
507
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
508
            if config is not None:
509
                self._config.__dict__.update(config)
510

511
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
512
513
514
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
515
516

        if self._config.output_type is not None:
517
            assert self._config.output_type in ALL_OUTPUT_TYPES
518
519
            self.OUTPUT_TYPE = self._config.output_type

520
521
522
523
524
525
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

526
527
528
529
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
530

531
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
532
        if self._config.metric_list is None:
533
            # TODO: handle this in TaskConfig.__post_init__ ?
534
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
535
536
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
537
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
538
539
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
540
541
542
543
544
545
546
547
548
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
551

552
                if "aggregation" in metric_config:
553
                    agg_name = metric_config["aggregation"]
554
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
555
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
556
557
558
559
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
560
                else:
561
562

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
563
                    metric_agg = get_default_aggregation(metric_name)
564
                    eval_logger.warning(
565
566
567
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
568
                    )
569
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
570

571
572
573
574
575
576
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
577
578
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
579
                        f"higher_is_better={is_higher_better(metric_name)}"
580
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
581
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
582

583
        self.download(self._config.dataset_kwargs)
584
585
586
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
587
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
588
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
589
590
591
592
593
594
595
596
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
597
598
599
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
600
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
601
        else:
602
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
603
604

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
605
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
606
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
607
608
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
609
610
611
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
612
613
614
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
615
            )
616

617
618
619
620
621
622
623
624
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

655
    def fewshot_docs(self):
656
        if self._config.fewshot_split is not None:
657
            return self.dataset[self._config.fewshot_split]
658
659
660
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
661
                    f"Task '{self._config.task}': "
662
663
664
665
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
666

667
668
669
670
671
672
673
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

674
675
676
677
678
679
680
681
682
683
684
685
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
686
687
688

        if self.prompt is not None:
            doc_to_text = self.prompt
689
690
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
691

692
693
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
694
        elif callable(doc_to_text):
695
696
697
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
698
        else:
699
            print(type(doc_to_text))
700
            raise TypeError
701
702

    def doc_to_target(self, doc):
703
704
705

        if self.prompt is not None:
            doc_to_target = self.prompt
706
707
708
        else:
            doc_to_target = self._config.doc_to_target

709
710
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
711
        elif callable(doc_to_target):
712
713
714
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
715
716
        else:
            raise TypeError
717

718
    def gold_alias(self, doc):
719
720
721
722
723
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
724
        if self._config.gold_alias is not None:
725
726
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
727
            return self.doc_to_target(doc)
728
729
730
731
732
733
734
735
736
737

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

738
739
    def construct_requests(self, doc, ctx, **kwargs):

740
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
741
            arguments = (ctx, self.doc_to_target(doc))
742
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
743
            arguments = (self.doc_to_target(doc),)
744
        elif self.OUTPUT_TYPE == "multiple_choice":
745
746
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
747
748
749
750
751
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
752
            request_list = [
753
754
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
755
                    doc=doc,
756
                    arguments=(ctx, " {}".format(choice)),
757
                    idx=i,
758
759
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
760
                for i, choice in enumerate(choices)
761
            ]
762
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
763
            if "acc_mutual_info" in self._metric_fn_list.keys():
764
765
766
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
767
                # here mutual info refers to calculating
768
769
770
771
772
773
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
774
                            doc=doc,
775
776
777
778
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
779
                        for i, choice in enumerate(choices)
780
781
782
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
783

784
        elif self.OUTPUT_TYPE == "greedy_until":
785
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
786
787

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
788
789
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
790
791
792

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
793
794
795
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

796
        result_dict = {}
797
        use_metric = list(self._metric_fn_list.keys())
798
799
800
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
801
802
803
804
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
805
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
806
            (loglikelihood,) = results
807
808
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
809
            return {
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
825
            }
826
        elif self.OUTPUT_TYPE == "multiple_choice":
827
828

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
829
830
831
832
833
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

834
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
835
836
837
838
839
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
840
841
            if (
                2 * len(choices) == len(lls)
842
                and "acc_mutual_info" in self._metric_fn_list.keys()
843
844
845
846
847
848
849
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
850

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
851
852
            pred = np.argmax(lls)

853
            acc = 1.0 if np.argmax(lls) == gold else 0.0
854
855
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
856
857

            result_dict = {
858
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
859
860
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
861
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
862
863
            }

864
            if "exact_match" in self._metric_fn_list.keys():
865
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
866
                is_greedy = is_greedy[gold]  # take value for the gold answer
867
868
                result_dict["exact_match"] = int(is_greedy)

869
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
870
871
872
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
873
874
875
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

876
877
878
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
879
                gold = self.gold_alias(doc)
880
881
882
            else:
                gold = self.doc_to_target(doc)

883
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
884
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
885
886
887
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
888
                )
889

lintangsutawika's avatar
lintangsutawika committed
890
                result_dict = {**result_dict, **_dict}
891
        else:
lintangsutawika's avatar
lintangsutawika committed
892
893
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
894
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
895
            )
896
897
898
899
900
901
902

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
903
        return self._higher_is_better
904
905
906
907
908
909
910
911
912
913


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
914
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
915
916
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
917
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
918
                doc=doc,
919
                arguments=(ctx, " {}".format(choice)),
920
                idx=i,
921
922
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
923
924
            for i, choice in enumerate(doc["choices"])
        ]
925
926

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
927
928
929
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
954
class PerplexityTask(Task):
955
956
957
958
959
960
961
962
963
964

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
965
    def fewshot_context(self, doc, num_fewshot, rnd=None):
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
994
995
996
997
998
999
1000
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1001
1002
1003

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1004
1005
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))