"test/vscode:/vscode.git/clone" did not exist on "3ea86a4d4602a6efbb430f74f9733d1094375732"
task.py 35.9 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
32
33
from lm_eval.api.metrics import (
    # get_metric,
    # get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
lintangsutawika's avatar
lintangsutawika committed
34
    METRIC_REGISTRY,
35
36
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
38
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
39
    DEFAULT_AGGREGATION_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
)
41

42
43
44
45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

49
50
51
52

@dataclass
class TaskConfig(dict):

53
    task: str = None
54
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
55
    reference: str = None
56

57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64

65
    template_aliases: str = None
66
67
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70

71
72
    num_fewshot: int = 0
    batch_size: int = 1
73
74
    repeats: int = 1

75
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
76
    gold_alias: Union[Callable, str] = None
77
    output_type: str = "greedy_until"
78
    generation_kwargs: dict = None
79
80
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
lintangsutawika's avatar
lintangsutawika committed
81
    filter_list: Union[str, list] = None
82
83
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
84

lintangsutawika's avatar
lintangsutawika committed
85
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
86

87
88
89
90
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
91
92
93
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
94

95
96
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
97

98
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
99
                self.gold_alias = self.template_aliases + self.gold_alias
100

101
        if self.generation_kwargs or self.output_type == "greedy_until":
102
103
104
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
105
106
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
107

108
109
110
    def __getitem__(self, item):
        return getattr(self, item)

111
    def to_dict(self):
112
113
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
114
        Used for dumping results alongside full task configuration
115

haileyschoelkopf's avatar
haileyschoelkopf committed
116
117
118
119
120
121
122
123
124
125
126
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
        return cfg_dict
127

128
129
130
131
132
133
134
135
136
137
138
139

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
140

141
142
143
144
145
146
147
148
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
184
        self._config = TaskConfig(**config) if config else TaskConfig()
185
186
187

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
188
            for name, components in self._config.get(
189
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
190
            ):
191
192
193
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
194
195
196
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
223
224
225
226
227
228
229
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

267
268
269
270
271
272
273
274
275
276
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
277
            eval_logger.warning(
278
                "has_training_docs and has_validation_docs are False"
279
                ", using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
280
            )
281
282
            return self.test_docs()

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

321
    def build_all_requests(self, limit=None, rank=None, world_size=None):
322
323
324
325
326
327
328
329
330
331
332
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
333
334
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
335
        ):
336
            # sample fewshot context #TODO: need to offset doc_id by rank now!
337
338
339
340
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
341
342
343
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
344
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
345
            )
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
371
            The number of times each instance in a dataset is inferred on. Defaults to 1,
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
407
408
409
410
411
412
413
414
415
416
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
437
438
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
439
        else:
lintangsutawika's avatar
lintangsutawika committed
440
441
442
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
443
444
445
446
447
448

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
449
450
451
452
453
454
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
455

456
    def dump_config(self):
457
        """Returns a dictionary representing the task's config.
458
459
460
461
462
463
464
465

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

466
467
468

class ConfigurableTask(Task):

469
    VERSION = "Yaml"
470
    OUTPUT_TYPE = None
471
    CONFIG = None
472
473
474
475

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
476
        # Get pre-configured attributes
477
        self._config = self.CONFIG
478

479
480
        # Use new configurations if there was no preconfiguration
        if self._config is None:
481
            self._config = TaskConfig(**config)
482
483
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
484
            if config is not None:
485
                self._config.__dict__.update(config)
486

487
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
488
489
490
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
491
492

        if self._config.output_type is not None:
493
            assert self._config.output_type in ALL_OUTPUT_TYPES
494
495
            self.OUTPUT_TYPE = self._config.output_type

496
497
498
499
500
501
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

502
503
504
505
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
506

507
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
508
        if self._config.metric_list is None:
509
            # TODO: handle this in TaskConfig.__post_init__ ?
510
511
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
512
513
514
                self._aggregation_list[metric_name] = DEFAULT_AGGREGATION_REGISTRY[
                    metric_name
                ]
515
516
517
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
518
519
520
521
522
523
524
525
526
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
527
                try:
528
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
529
                except Exception:
530
531
532
533
534
535
536
537
538
539
540
541
542
543
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
544

545
                if "aggregation" in metric_config:
546
                    agg_name = metric_config["aggregation"]
547
548
549
550
551
552
553
554
                    if type(agg_name) == str:
                        self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                            agg_name
                        ]
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
555
                else:
556
557
558

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    metric_agg = DEFAULT_AGGREGATION_REGISTRY[metric_name]
559
                    eval_logger.warning(
560
561
562
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
563
                    )
564
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
565

566
567
568
569
570
571
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
572
573
574
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={HIGHER_IS_BETTER_REGISTRY[metric_name]}"
575
                    )
576
577
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
578
                    ]
579

580
        self.download(self._config.dataset_kwargs)
581
582
583
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
584
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
585
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
586
587
588
589
590
591
592
593
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
594
595
596
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
597
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
598
        else:
599
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
600
601

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
602
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
603
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
604
605
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
606
607
608
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
609
610
611
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
612
            )
613

614
615
616
617
618
619
620
621
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

652
    def fewshot_docs(self):
653
        if self._config.fewshot_split is not None:
654
            return self.dataset[self._config.fewshot_split]
655
656
657
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
658
                    f"Task '{self._config.task}': "
659
660
661
662
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
663

664
665
666
667
668
669
670
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

671
672
673
674
675
676
677
678
679
680
681
682
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
683
684
685

        if self.prompt is not None:
            doc_to_text = self.prompt
686
687
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
688

689
690
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
691
        elif callable(doc_to_text):
692
693
694
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
695
        else:
696
            print(type(doc_to_text))
697
            raise TypeError
698
699

    def doc_to_target(self, doc):
700
701
702

        if self.prompt is not None:
            doc_to_target = self.prompt
703
704
705
        else:
            doc_to_target = self._config.doc_to_target

706
707
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
708
        elif callable(doc_to_target):
709
710
711
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
712
713
        else:
            raise TypeError
714

715
    def gold_alias(self, doc):
716
        # TODO: reevaluate if we need this. implemented to have a
717
        # processed version of answer to put into gsm8k exact_match scoring as ref.
lintangsutawika's avatar
lintangsutawika committed
718
        if self._config.gold_alias is not None:
719
720
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
721
722
            # doc_to_target = self._config.doc_to_target
            return self.doc_to_target(doc)
723
724
725
726
727
728
729
730
731
732

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

733
734
    def construct_requests(self, doc, ctx, **kwargs):

735
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
736
            arguments = (ctx, self.doc_to_target(doc))
737
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
738
            arguments = (self.doc_to_target(doc),)
739
        elif self.OUTPUT_TYPE == "multiple_choice":
740
741
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
742
743
744
745
746
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
747
            request_list = [
748
749
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
750
                    doc=doc,
751
                    arguments=(ctx, " {}".format(choice)),
752
                    idx=i,
753
754
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
755
                for i, choice in enumerate(choices)
756
            ]
757
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
758
            if "acc_mutual_info" in self._metric_fn_list.keys():
759
760
761
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
762
                # here mutual info refers to calculating
763
764
765
766
767
768
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
769
                            doc=doc,
770
771
772
773
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
774
                        for i, choice in enumerate(choices)
775
776
777
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
778

779
        elif self.OUTPUT_TYPE == "greedy_until":
780
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
781
782

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
783
784
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
785
786
787

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
788
789
790
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

791
        result_dict = {}
792
        use_metric = list(self._metric_fn_list.keys())
793
794
795
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
796
797
798
799
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
800
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
801
            (loglikelihood,) = results
802
803
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
804
            return {
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
820
            }
821
        elif self.OUTPUT_TYPE == "multiple_choice":
822
823

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
824
825
826
827
828
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

829
            pred = np.argmax(lls)
830
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
831
832
833
834
835
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
836
837
            if (
                2 * len(choices) == len(lls)
838
                and "acc_mutual_info" in self._metric_fn_list.keys()
839
840
841
842
843
844
845
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
846
847

            acc = 1.0 if np.argmax(lls) == gold else 0.0
848
849
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
850
851

            result_dict = {
852
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
853
854
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
855
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
856
857
858
            }

            # TODO: set which normalization metrics should be reported, and calculate them
859
            if "exact_match" in self._metric_fn_list.keys():
860
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
861
                is_greedy = is_greedy[gold]  # take value for the gold answer
862
863
                result_dict["exact_match"] = int(is_greedy)

864
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
865
866
867
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
868
869
870
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

871
872
873
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
874
                gold = self.gold_alias(doc)
875
876
877
            else:
                gold = self.doc_to_target(doc)

878
879
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
880
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
881
                )
882

lintangsutawika's avatar
lintangsutawika committed
883
                result_dict = {**result_dict, **_dict}
884
        else:
lintangsutawika's avatar
lintangsutawika committed
885
886
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
887
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
888
            )
889
890
891
892
893
894
895

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
896
        return self._higher_is_better
897
898
899
900
901
902
903
904
905
906


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
907
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
908
909
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
910
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
911
                doc=doc,
912
                arguments=(ctx, " {}".format(choice)),
913
                idx=i,
914
915
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
916
917
            for i, choice in enumerate(doc["choices"])
        ]
918
919

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
920
921
922
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
947
class PerplexityTask(Task):
948
949
950
951
952
953
954
955
956
957

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
958
    def fewshot_context(self, doc, num_fewshot, rnd=None):
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
987
988
989
990
991
992
993
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
994
995
996

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
997
998
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))