task.py 35.9 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
32
33
from lm_eval.api.metrics import (
    # get_metric,
    # get_aggregation,
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
lintangsutawika's avatar
lintangsutawika committed
34
    METRIC_REGISTRY,
35
36
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
38
    AGGREGATION_REGISTRY,
    HIGHER_IS_BETTER_REGISTRY,
39
    DEFAULT_AGGREGATION_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
40
)
41

42
43
44
45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

49
50
51
52

@dataclass
class TaskConfig(dict):

53
    task: str = None
54
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
55
    reference: str = None
56

57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64

65
    template_aliases: str = None
66
67
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
68
    use_prompt: str = None
69
70
    delimiter: str = "\n\n"
    description: str = ""
71

72
73
    num_fewshot: int = 0
    batch_size: int = 1
74
75
    repeats: int = 1

76
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
77
    gold_alias: Union[Callable, str] = None
78
    output_type: str = "greedy_until"
79
    generation_kwargs: dict = None
lintangsutawika's avatar
lintangsutawika committed
80
    target_delimiter: str = "\n\n"
Lintang Sutawika's avatar
Lintang Sutawika committed
81
    fewshot_delimiter: str = " "
lintangsutawika's avatar
lintangsutawika committed
82
    filter_list: Union[str, list] = None
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85

lintangsutawika's avatar
lintangsutawika committed
86
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

88
89
90
91
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
92
93
94
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
95

96
97
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
98

99
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
100
                self.gold_alias = self.template_aliases + self.gold_alias
101

102
        if self.generation_kwargs or self.output_type == "greedy_until":
103
104
105
            assert (
                self.output_type == "greedy_until"
            ), "passed `generation_kwargs`, but not using a generation request type!"
106
107
            # ensure that we greedily generate in absence of explicit arguments otherwise
            self.generation_kwargs = {"do_sample": False, "temperature": 0.0}
108

109
110
111
    def __getitem__(self, item):
        return getattr(self, item)

112
    def to_dict(self):
113
114
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
115
        Used for dumping results alongside full task configuration
116

haileyschoelkopf's avatar
haileyschoelkopf committed
117
118
119
120
121
122
123
124
125
126
127
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
        return cfg_dict
128

129
130
131
132
133
134
135
136
137
138
139
140

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
141

142
143
144
145
146
147
148
149
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
185
        self._config = TaskConfig(**config) if config else TaskConfig()
186
187
188

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
189
            for name, components in self._config.get(
190
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
191
            ):
192
193
194
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
195
196
197
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
224
225
226
227
228
229
230
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

268
269
270
271
272
273
274
275
276
277
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
278
            eval_logger.warning(
279
                "has_training_docs and has_validation_docs are False"
280
                ", using test_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
281
            )
282
283
            return self.test_docs()

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

322
    def build_all_requests(self, limit=None, rank=None, world_size=None):
323
324
325
326
327
328
329
330
331
332
333
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
334
335
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
336
        ):
337
            # sample fewshot context #TODO: need to offset doc_id by rank now!
338
339
340
341
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
            # TODO: hardcoded for now: # of runs on each input to be 2. # TODO: we should override this if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
342
343
344
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
345
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
346
            )
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
372
            The number of times each instance in a dataset is inferred on. Defaults to 1,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
408
409
410
411
412
413
414
415
416
417
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
438
439
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
440
        else:
lintangsutawika's avatar
lintangsutawika committed
441
442
443
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
444
445
446
447
448
449

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
450
451
452
453
454
455
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
456

457
    def dump_config(self):
458
        """Returns a dictionary representing the task's config.
459
460
461
462
463
464
465
466

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

467
468
469

class ConfigurableTask(Task):

470
    VERSION = "Yaml"
471
    OUTPUT_TYPE = None
472
    CONFIG = None
473
474
475
476

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
477
        # Get pre-configured attributes
478
        self._config = self.CONFIG
479

480
481
        # Use new configurations if there was no preconfiguration
        if self._config is None:
482
            self._config = TaskConfig(**config)
483
484
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
485
            if config is not None:
486
                self._config.__dict__.update(config)
487

488
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
489
490
491
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
492
493

        if self._config.output_type is not None:
494
            assert self._config.output_type in ALL_OUTPUT_TYPES
495
496
            self.OUTPUT_TYPE = self._config.output_type

497
498
499
500
501
502
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

503
504
505
506
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
507

508
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
509
        if self._config.metric_list is None:
510
            # TODO: handle this in TaskConfig.__post_init__ ?
511
512
            for metric_name in _metric_list:
                self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
lintangsutawika's avatar
lintangsutawika committed
513
514
515
                self._aggregation_list[metric_name] = DEFAULT_AGGREGATION_REGISTRY[
                    metric_name
                ]
516
517
518
                self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                    metric_name
                ]
519
520
521
522
523
524
525
526
527
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
528
                try:
529
                    self._metric_fn_list[metric_name] = METRIC_REGISTRY[metric_name]
530
                except Exception:
531
532
533
534
535
536
537
538
539
540
541
542
543
544
                    eval_logger.warning(
                        f"Metric {metric_name} not found, "
                        "Searching from https://huggingface.co/evaluate-metric"
                    )
                    try:
                        metric_object = evaluate.load(metric_name)
                        self._metric_fn_list[metric_name] = metric_object
                        self._metric_fn_kwargs[metric_name] = kwargs

                    except Exception:
                        raise Warning(
                            "{} not found in the evaluate library!".format(metric_name),
                            "Please check https://huggingface.co/evaluate-metric",
                        )
lintangsutawika's avatar
lintangsutawika committed
545

546
                if "aggregation" in metric_config:
547
                    agg_name = metric_config["aggregation"]
548
549
550
551
552
553
554
555
                    if type(agg_name) == str:
                        self._aggregation_list[metric_name] = AGGREGATION_REGISTRY[
                            agg_name
                        ]
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
556
                else:
557
558
559

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    metric_agg = DEFAULT_AGGREGATION_REGISTRY[metric_name]
560
                    eval_logger.warning(
561
562
563
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
564
                    )
565
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
566

567
568
569
570
571
572
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
573
574
575
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={HIGHER_IS_BETTER_REGISTRY[metric_name]}"
576
                    )
577
578
                    self._higher_is_better[metric_name] = HIGHER_IS_BETTER_REGISTRY[
                        metric_name
lintangsutawika's avatar
lintangsutawika committed
579
                    ]
580

581
        self.download(self._config.dataset_kwargs)
582
583
584
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
585
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
586
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
587
588
589
590
591
592
593
594
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
595
596
597
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
598
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
599
        else:
600
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
601
602

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
603
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
604
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
605
606
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
607
608
609
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
610
611
612
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
613
            )
614

615
616
617
618
619
620
621
622
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

653
    def fewshot_docs(self):
654
        if self._config.fewshot_split is not None:
655
            return self.dataset[self._config.fewshot_split]
656
657
658
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
659
                    f"Task '{self._config.task}': "
660
661
662
663
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
664

665
666
667
668
669
670
671
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

672
673
674
675
676
677
678
679
680
681
682
683
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
684
685
686

        if self.prompt is not None:
            doc_to_text = self.prompt
687
688
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
689

690
691
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
692
        elif callable(doc_to_text):
693
694
695
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
696
        else:
697
            print(type(doc_to_text))
698
            raise TypeError
699
700

    def doc_to_target(self, doc):
701
702
703

        if self.prompt is not None:
            doc_to_target = self.prompt
704
705
706
        else:
            doc_to_target = self._config.doc_to_target

707
708
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
709
        elif callable(doc_to_target):
710
711
712
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
713
714
        else:
            raise TypeError
715

716
    def gold_alias(self, doc):
717
        # TODO: reevaluate if we need this. implemented to have a
718
        # processed version of answer to put into gsm8k exact_match scoring as ref.
lintangsutawika's avatar
lintangsutawika committed
719
        if self._config.gold_alias is not None:
720
721
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
722
723
            # doc_to_target = self._config.doc_to_target
            return self.doc_to_target(doc)
724
725
726
727
728
729
730
731
732
733

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

734
735
    def construct_requests(self, doc, ctx, **kwargs):

736
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
737
            arguments = (ctx, self.doc_to_target(doc))
738
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
739
            arguments = (self.doc_to_target(doc),)
740
        elif self.OUTPUT_TYPE == "multiple_choice":
741
742
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
743
744
745
746
747
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
748
            request_list = [
749
750
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
751
                    doc=doc,
752
                    arguments=(ctx, " {}".format(choice)),
753
                    idx=i,
754
755
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
756
                for i, choice in enumerate(choices)
757
            ]
758
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
759
            if "acc_mutual_info" in self._metric_fn_list.keys():
760
761
762
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
763
                # here mutual info refers to calculating
764
765
766
767
768
769
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
770
                            doc=doc,
771
772
773
774
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
775
                        for i, choice in enumerate(choices)
776
777
778
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
779

780
        elif self.OUTPUT_TYPE == "greedy_until":
781
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
782
783

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
784
785
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
786
787
788

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
789
790
791
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

792
        result_dict = {}
793
        use_metric = list(self._metric_fn_list.keys())
794
795
796
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
797
798
799
800
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
801
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
802
            (loglikelihood,) = results
803
804
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
805
            return {
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
821
            }
822
        elif self.OUTPUT_TYPE == "multiple_choice":
823
824

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
825
826
827
828
829
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

830
            pred = np.argmax(lls)
831
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
832
833
834
835
836
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
837
838
            if (
                2 * len(choices) == len(lls)
839
                and "acc_mutual_info" in self._metric_fn_list.keys()
840
841
842
843
844
845
846
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
847
848

            acc = 1.0 if np.argmax(lls) == gold else 0.0
849
850
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
851
852

            result_dict = {
853
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
854
855
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
856
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
857
858
859
            }

            # TODO: set which normalization metrics should be reported, and calculate them
860
            if "exact_match" in self._metric_fn_list.keys():
861
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
862
                is_greedy = is_greedy[gold]  # take value for the gold answer
863
864
                result_dict["exact_match"] = int(is_greedy)

865
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
866
867
868
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
869
870
871
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

872
873
874
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
875
                gold = self.gold_alias(doc)
876
877
878
            else:
                gold = self.doc_to_target(doc)

879
880
            for key, result in zip(self._metric_fn_list.keys(), results):
                _dict = self._metric_fn_list[key].compute(
lintangsutawika's avatar
lintangsutawika committed
881
                    references=[gold], predictions=[result], **self._metric_kwargs[key]
882
                )
883

lintangsutawika's avatar
lintangsutawika committed
884
                result_dict = {**result_dict, **_dict}
885
        else:
lintangsutawika's avatar
lintangsutawika committed
886
887
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
888
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
889
            )
890
891
892
893
894
895
896

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
897
        return self._higher_is_better
898
899
900
901
902
903
904
905
906
907


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
908
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
909
910
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
911
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
912
                doc=doc,
913
                arguments=(ctx, " {}".format(choice)),
914
                idx=i,
915
916
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
917
918
            for i, choice in enumerate(doc["choices"])
        ]
919
920

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
921
922
923
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
948
class PerplexityTask(Task):
949
950
951
952
953
954
955
956
957
958

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
959
    def fewshot_context(self, doc, num_fewshot, rnd=None):
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
988
989
990
991
992
993
994
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
995
996
997

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
998
999
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))