evaluator.py 24 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
lintangsutawika's avatar
lintangsutawika committed
3
4
import collections

5
6
import torch

7
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
8
9

import lm_eval.api
10
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
11
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
16
17
18
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    get_git_commit_hash,
lintangsutawika's avatar
lintangsutawika committed
19
    simple_parse_args_string,
lintangsutawika's avatar
lintangsutawika committed
20
    eval_logger,
lintangsutawika's avatar
lintangsutawika committed
21
)
22

Fabrizio Milo's avatar
Fabrizio Milo committed
23

24
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
25
26
27
28
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
29
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
30
    batch_size=None,
31
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
32
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
33
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
34
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
35
36
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
37
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
38
39
    write_out: bool = False,
    log_samples: bool = True,
lintangsutawika's avatar
lintangsutawika committed
40
    gen_kwargs: str = None,
lintangsutawika's avatar
lintangsutawika committed
41
    weight_by_size: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
42
):
43
    """Instantiate and evaluate a model on a list of tasks.
44

45
46
47
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
48
        String arguments for each model class, see LM.create_from_arg_string.
49
        Ignored if `model` argument is a LM object.
50
51
    :param tasks: list[Task]
        List of Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
52
53
    :param num_fewshot: int
        Number of examples in few-shot context
54
    :param batch_size: int or str, optional
55
        Batch size for model
56
57
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
58
    :param device: str, optional
59
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
60
61
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
62
63
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
64
65
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
66
67
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
68
    :param write_out: bool
69
70
71
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
72
73
74
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
75
    :return
76
        Dictionary of results
77
    """
78
    random.seed(0)
79
    np.random.seed(1234)
80
81
82
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
83

84
85
86
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
87

lintangsutawika's avatar
lintangsutawika committed
88
89
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
90
        eval_logger.warning(
91
            "generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks."
lintangsutawika's avatar
udate  
lintangsutawika committed
92
        )
lintangsutawika's avatar
lintangsutawika committed
93
94
95
        if gen_kwargs == "":
            gen_kwargs = None

96
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
97
98
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
99
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
100
101
102
103
104
105
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
106
        )
107
    else:
108
        assert isinstance(model, lm_eval.api.model.LM)
109
        lm = model
110

haileyschoelkopf's avatar
haileyschoelkopf committed
111
112
113
114
115
116
117
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
118
119
120
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
121
122
        )

lintangsutawika's avatar
lintangsutawika committed
123
    task_dict = tasks
124
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
125
126
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
lintangsutawika's avatar
lintangsutawika committed
127
            _, task_obj = task_obj
128
129
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
130
131

        config = task_obj._config
lintangsutawika's avatar
udate  
lintangsutawika committed
132
        if config["output_type"] == "generate_until" and gen_kwargs is not None:
lintangsutawika's avatar
lintangsutawika committed
133
            config["generation_kwargs"].update(gen_kwargs)
134

135
        if num_fewshot is not None:
136
137
138
139
            if config["num_fewshot"] == 0:
                eval_logger.info(
                    f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                )
140
            else:
141
142
143
144
145
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

146
                task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
147

Stephen Hogg's avatar
Stephen Hogg committed
148
    if check_integrity:
149
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
150

151
152
153
154
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
155
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
156
        decontamination_ngrams_path=decontamination_ngrams_path,
157
        write_out=write_out,
158
        log_samples=log_samples,
lintangsutawika's avatar
lintangsutawika committed
159
        weight_by_size=weight_by_size,
160
    )
161

162
    if lm.rank == 0:
163
164
165
166
167
168
169
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

170
171
        # add info about the model and few shot config
        results["config"] = {
172
            "model": model_name,
173
174
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
175
176
177
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
178
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
179
            "use_cache": use_cache,
180
181
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
lintangsutawika's avatar
lintangsutawika committed
182
            "gen_kwargs": gen_kwargs,
183
        }
184
        results["git_hash"] = get_git_commit_hash()
185
186
187
        return results
    else:
        return None
188

Leo Gao's avatar
Leo Gao committed
189

190
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
191

Fabrizio Milo's avatar
Fabrizio Milo committed
192

193
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
194
195
196
197
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
198
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
199
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
200
201
    write_out: bool = False,
    log_samples: bool = True,
lintangsutawika's avatar
lintangsutawika committed
202
    weight_by_size: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
203
):
204
205
206
207
208
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
209
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
210
211
212
213
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
214
    :param write_out: bool
215
216
217
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
218
219
220
    :return
        Dictionary of results
    """
221

lintangsutawika's avatar
lintangsutawika committed
222
    # decontaminate = decontamination_ngrams_path is not None
223

224
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
225
    results = collections.defaultdict(dict)
226
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
227
    versions = collections.defaultdict(dict)
228
    # Tracks the YAML configs of all chosen tasks.
229
    configs = collections.defaultdict(dict)
230
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
231
    samples = collections.defaultdict(list)
232
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
233
    requests = collections.defaultdict(list)
234
    # Aggregated task scores presented with groups
235
    results_agg = collections.defaultdict(dict)
236
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
237
    groups_agg = collections.defaultdict(dict)
238
239
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
240
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
241
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
242
    task_hierarchy = collections.defaultdict(list)
243
244
    # store num-fewshot value per task
    num_fewshot = collections.defaultdict(int)
245

246
    # get lists of each type of request
247
    for task_name, task in task_dict.items():
248
        if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
249
250
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
251
            versions[group_name] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
252

253
        else:
254
            group_name = None
lintangsutawika's avatar
lintangsutawika committed
255
256
257
258
            task_hierarchy[task_name] = []

        if task is None:
            continue
259

Leo Gao's avatar
Leo Gao committed
260
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
261
262
        configs[task_name] = dict(task.dump_config())

263
264
265
        if "num_fewshot" in configs[task_name]:
            n_shot = configs[task_name]["num_fewshot"]
        else:
266
            n_shot = 0
267
268
        num_fewshot[task_name] = n_shot

lintangsutawika's avatar
lintangsutawika committed
269
        if "task_alias" in configs[task_name]:
Lintang Sutawika's avatar
Lintang Sutawika committed
270
            results[task_name]["alias"] = configs[task_name]["task_alias"]
lintangsutawika's avatar
lintangsutawika committed
271

lintangsutawika's avatar
format  
lintangsutawika committed
272
273
        if (
            ("group_alias" in configs[task_name])
Lintang Sutawika's avatar
Lintang Sutawika committed
274
            and (group_name not in results)
lintangsutawika's avatar
format  
lintangsutawika committed
275
            and (group_name is not None)
lintangsutawika's avatar
lintangsutawika committed
276
        ):
Lintang Sutawika's avatar
Lintang Sutawika committed
277
            results[group_name]["alias"] = configs[task_name]["group_alias"]
lintangsutawika's avatar
lintangsutawika committed
278

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
279
        if limit is not None:
280
281
282
283
284
285
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
286
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
287

288
289
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

290
        eval_logger.debug(
haileyschoelkopf's avatar
haileyschoelkopf committed
291
292
293
294
295
296
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
297
298
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
299
300
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
301
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
302
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
303

304
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
305
306
307
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
308
309

        if lm.world_size > 1:
310
311
312
313
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
314

315
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
316
            numpad = max(gathered_item) - gathered_item[lm.rank]
317
            padding_requests[task.OUTPUT_TYPE] += numpad
318

319
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
320
321
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
322
        eval_logger.info("Running {} requests".format(reqtype))
323
324
325
326
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
327

328
329
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
330
331
                cloned_reqs.extend([req] * req.repeats)

332
333
334
335
336
337
338
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

339
340
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
341

342
343
344
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
345
346
        if type(task) == tuple:
            group, task = task
347
348
            if task is None:
                continue
349
350
351
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
352
353
354
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
355
    for task_name, task in task_dict.items():
356
357
        if type(task) == tuple:
            group, task = task
358
359
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
360
361
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
362
        for key in task.instances[0].filtered_resps.keys():
363
364
365
366
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
367
                if task.has_test_docs()
368
369
370
371
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
372
            for doc_id, doc in doc_iterator:
373
374
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
375
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
376
377
378
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
379
380
381
382
383
384
385
386
387
388
389
390
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
391
392
393
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

394
    if lm.world_size > 1:
395
        # if multigpu, then gather data across all ranks
396
397
398
399
400
401
402
403
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
404
405
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
406
            numitem = 0
407
            if type(items[0]) == tuple:
408
409
                numitem = len(items[0])

Lintang Sutawika's avatar
Lintang Sutawika committed
410
            if isinstance(items[0], (str, list, tuple)):
411
412
413
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
414

415
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
416
            else:
417
418
419
420
421
422
423
424
425
426
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
427

428
429
430
431
432
433
434
435
436
437
438
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
439

440
441
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
442

443
        vals = vals_torch
444

445
    if lm.rank == 0:
lintangsutawika's avatar
lintangsutawika committed
446

447
448
449
450
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
451
452
            metric_key = metric + "," + key

453
            if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
                group_name, task = task
            else:
                group_name = None

458
            agg_fn = task.aggregation()[metric]
459
460
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
461

462
463
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
464
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
465
466
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
467
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
468
469
470
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
471

lintangsutawika's avatar
lintangsutawika committed
472
                if stderr is not None and len(items) > 1:
haileyschoelkopf's avatar
haileyschoelkopf committed
473
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
474
                else:
lintangsutawika's avatar
lintangsutawika committed
475
                    results[task_name][metric + "_stderr" + "," + key] = "N/A"
Fabrizio Milo's avatar
Fabrizio Milo committed
476

lintangsutawika's avatar
lintangsutawika committed
477
        if bool(results):
478
            for group, task_list in reversed(task_hierarchy.items()):
479
480
481
482
483
484
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
Lintang Sutawika's avatar
Lintang Sutawika committed
485
486
487
488
                        metrics = results[task].copy()

                        if "alias" in metrics:
                            metrics.pop("alias")
489

490
                        if ("weight_by_size" in configs) and configs[task]["weight_by_size"]:
lintangsutawika's avatar
lintangsutawika committed
491
492
                            current_size = metrics.pop("samples")
                        else:
lintangsutawika's avatar
lintangsutawika committed
493
                            metrics.pop("samples")
lintangsutawika's avatar
lintangsutawika committed
494
                            current_size = 1
495
496
497
498
499
500
501

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:
                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
502
503
504
505
506
                            if stderr_score == "N/A":
                                var_score = "N/A"
                            else:
                                var_score = stderr_score**2
                                all_stderr.append(stderr)
507

508
                            metric_score = results[task][metric]
509
510
511
512
513
514
515

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                                if var_score == "N/A":
                                    results[group][stderr] = "N/A"
                                else:
                                    results[group][stderr] = (
                                        (total_size - 1) * results[group][stderr]
                                        + (current_size - 1) * var_score
                                    ) / (
                                        total_size + current_size - 1
                                    ) + total_size * current_size / (
                                        (total_size + current_size)
                                        * (total_size + current_size - 1)
                                    ) * (
                                        results[group][metric] - metric_score
                                    ) ** 2
530
531
                            else:
                                results[group][metric] = metric_score
lintangsutawika's avatar
lintangsutawika committed
532
                                results[group][stderr] = var_score
533
534
535
536
537

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
538

539
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
540

Lintang Sutawika's avatar
Lintang Sutawika committed
541
        def print_tasks(task_hierarchy, results, tab=0):
542
543
544
            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)

Lintang Sutawika's avatar
Lintang Sutawika committed
545
546
            (group_name, task_list), *_ = task_hierarchy.items()
            task_list = sorted(task_list)
547

Lintang Sutawika's avatar
Lintang Sutawika committed
548
549
550
551
            results_agg[group_name] = results[group_name].copy()
            # results_agg[group_name]["tab"] = tab
            if "samples" in results_agg[group_name]:
                results_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
552

Lintang Sutawika's avatar
Lintang Sutawika committed
553
            tab_string = " " * tab + "- " if tab > 0 else ""
lintangsutawika's avatar
lintangsutawika committed
554

Lintang Sutawika's avatar
Lintang Sutawika committed
555
556
557
558
            if "alias" in results_agg[group_name]:
                results_agg[group_name]["alias"] = (
                    tab_string + results_agg[group_name]["alias"]
                )
lintangsutawika's avatar
lintangsutawika committed
559
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
560
                results_agg[group_name]["alias"] = tab_string + group_name
lintangsutawika's avatar
lintangsutawika committed
561

Lintang Sutawika's avatar
Lintang Sutawika committed
562
563
564
565
566
            if len(task_list) > 0:
                groups_agg[group_name] = results[group_name].copy()
                # groups_agg[group_name]["tab"] = tab
                if "samples" in groups_agg[group_name]:
                    groups_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
567

Lintang Sutawika's avatar
Lintang Sutawika committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
                if "alias" in groups_agg[group_name]:
                    groups_agg[group_name]["alias"] = (
                        tab_string + groups_agg[group_name]["alias"]
                    )
                else:
                    groups_agg[group_name]["alias"] = tab_string + group_name

                for task_name in task_list:
                    if task_name in task_hierarchy:
                        _task_hierarchy = {
                            **{task_name: task_hierarchy[task_name]},
                            **task_hierarchy,
                        }
                    else:
                        _task_hierarchy = {
                            **{task_name: []},
                            **task_hierarchy,
                        }

                    _results_agg, _groups_agg = print_tasks(
                        _task_hierarchy, results, tab + 1
                    )
                    results_agg = {**results_agg, **_results_agg}
                    groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg

        results_agg = collections.defaultdict(dict)
        groups_agg = collections.defaultdict(dict)
        all_tasks_list = list(task_hierarchy.keys())
        left_tasks_list = []
        while True:
            add_tasks_list = list(k for k in results_agg.keys())
            left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list)))
            if len(left_tasks_list) == 0:
                break

            _task_hierarchy = {
                k: v for k, v in task_hierarchy.items() if k in left_tasks_list
            }
            _results_agg, _groups_agg = print_tasks(_task_hierarchy, results)

            results_agg = {**results_agg, **_results_agg}
            groups_agg = {**groups_agg, **_groups_agg}
lintangsutawika's avatar
lintangsutawika committed
612

613
        for group_name, task_list in task_hierarchy.items():
Lintang Sutawika's avatar
Lintang Sutawika committed
614
615
            if task_list != []:
                num_fewshot[group_name] = num_fewshot[task_list[0]]
616

617
        results_dict = {
618
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
619
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
620
621
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
622
            "n-shot": dict(sorted(num_fewshot.items())),
623
        }
624
625
626
627
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
628

629
630
    else:
        return None