evaluator.py 24.1 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
lintangsutawika's avatar
lintangsutawika committed
3
4
import collections

5
6
import torch

7
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
8
9

import lm_eval.api
10
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
11
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
16
17
18
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    get_git_commit_hash,
lintangsutawika's avatar
lintangsutawika committed
19
    simple_parse_args_string,
lintangsutawika's avatar
lintangsutawika committed
20
    eval_logger,
lintangsutawika's avatar
lintangsutawika committed
21
)
22

Fabrizio Milo's avatar
Fabrizio Milo committed
23

24
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
25
26
27
28
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
29
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
30
    batch_size=None,
31
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
32
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
33
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
34
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
35
36
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
37
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
38
39
    write_out: bool = False,
    log_samples: bool = True,
lintangsutawika's avatar
lintangsutawika committed
40
    gen_kwargs: str = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
41
):
42
    """Instantiate and evaluate a model on a list of tasks.
43

44
45
46
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
47
        String arguments for each model class, see LM.create_from_arg_string.
48
49
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
50
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
51
52
    :param num_fewshot: int
        Number of examples in few-shot context
53
    :param batch_size: int or str, optional
54
        Batch size for model
55
56
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
57
    :param device: str, optional
58
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
59
60
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
61
62
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
63
64
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
65
66
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
67
    :param write_out: bool
68
69
70
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
71
72
73
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
74
    :return
75
        Dictionary of results
76
    """
77
    random.seed(0)
78
    np.random.seed(1234)
79
80
81
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
82

83
84
85
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
86

lintangsutawika's avatar
lintangsutawika committed
87
88
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
89
        eval_logger.warning(
90
            "generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks."
lintangsutawika's avatar
udate  
lintangsutawika committed
91
        )
lintangsutawika's avatar
lintangsutawika committed
92
93
94
        if gen_kwargs == "":
            gen_kwargs = None

95
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
96
97
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
98
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
99
100
101
102
103
104
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
105
        )
106
    else:
107
        assert isinstance(model, lm_eval.api.model.LM)
108
        lm = model
109

haileyschoelkopf's avatar
haileyschoelkopf committed
110
111
112
113
114
115
116
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
117
118
119
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
120
121
        )

122
123
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
124
125
126
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
            group, task_obj = task_obj
127
128
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
129
130

        config = task_obj._config
lintangsutawika's avatar
udate  
lintangsutawika committed
131
        if config["output_type"] == "generate_until" and gen_kwargs is not None:
lintangsutawika's avatar
lintangsutawika committed
132
            config["generation_kwargs"].update(gen_kwargs)
133

134
        if num_fewshot is not None:
135
136
137
138
            if config["num_fewshot"] == 0:
                eval_logger.info(
                    f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                )
139
            else:
140
141
142
143
144
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

145
                task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
146

Stephen Hogg's avatar
Stephen Hogg committed
147
    if check_integrity:
148
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
149

150
151
152
153
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
154
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
155
        decontamination_ngrams_path=decontamination_ngrams_path,
156
        write_out=write_out,
157
        log_samples=log_samples,
158
    )
159

160
    if lm.rank == 0:
161
162
163
164
165
166
167
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

168
169
        # add info about the model and few shot config
        results["config"] = {
170
            "model": model_name,
171
172
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
173
174
175
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
176
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
177
            "use_cache": use_cache,
178
179
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
lintangsutawika's avatar
lintangsutawika committed
180
            "gen_kwargs": gen_kwargs,
181
        }
182
        results["git_hash"] = get_git_commit_hash()
183
184
185
        return results
    else:
        return None
186

Leo Gao's avatar
Leo Gao committed
187

188
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
189

Fabrizio Milo's avatar
Fabrizio Milo committed
190

191
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
192
193
194
195
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
196
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
197
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
198
199
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
200
):
201
202
203
204
205
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
206
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
207
208
209
210
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
211
    :param write_out: bool
212
213
214
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
215
216
217
    :return
        Dictionary of results
    """
218

lintangsutawika's avatar
lintangsutawika committed
219
    # decontaminate = decontamination_ngrams_path is not None
220

221
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
222
    results = collections.defaultdict(dict)
223
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
224
    versions = collections.defaultdict(dict)
225
    # Tracks the YAML configs of all chosen tasks.
226
    configs = collections.defaultdict(dict)
227
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
228
    samples = collections.defaultdict(list)
229
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
230
    requests = collections.defaultdict(list)
231
    # Aggregated task scores presented with groups
232
    results_agg = collections.defaultdict(dict)
233
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
234
    groups_agg = collections.defaultdict(dict)
235
236
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
237
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
238
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
239
    task_hierarchy = collections.defaultdict(list)
240
241
    # store num-fewshot value per task
    num_fewshot = collections.defaultdict(int)
242

243
    # get lists of each type of request
244
    for task_name, task in task_dict.items():
245
        if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
246
247
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
248
            versions[group_name] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
249

250
        else:
251
            group_name = None
lintangsutawika's avatar
lintangsutawika committed
252
253
254
255
            task_hierarchy[task_name] = []

        if task is None:
            continue
256

Leo Gao's avatar
Leo Gao committed
257
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
258
259
        configs[task_name] = dict(task.dump_config())

260
261
262
        if "num_fewshot" in configs[task_name]:
            n_shot = configs[task_name]["num_fewshot"]
        else:
263
            n_shot = 0
264
265
        num_fewshot[task_name] = n_shot

lintangsutawika's avatar
lintangsutawika committed
266
        if "task_alias" in configs[task_name]:
Lintang Sutawika's avatar
Lintang Sutawika committed
267
            results[task_name]["alias"] = configs[task_name]["task_alias"]
lintangsutawika's avatar
lintangsutawika committed
268

lintangsutawika's avatar
format  
lintangsutawika committed
269
270
        if (
            ("group_alias" in configs[task_name])
Lintang Sutawika's avatar
Lintang Sutawika committed
271
            and (group_name not in results)
lintangsutawika's avatar
format  
lintangsutawika committed
272
            and (group_name is not None)
lintangsutawika's avatar
lintangsutawika committed
273
        ):
Lintang Sutawika's avatar
Lintang Sutawika committed
274
            results[group_name]["alias"] = configs[task_name]["group_alias"]
lintangsutawika's avatar
lintangsutawika committed
275

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
276
        if limit is not None:
277
278
279
280
281
282
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
283
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
284

285
286
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

287
        eval_logger.debug(
haileyschoelkopf's avatar
haileyschoelkopf committed
288
289
290
291
292
293
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
294
295
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
296
297
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
298
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
299
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
300

301
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
302
303
304
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
305
306

        if lm.world_size > 1:
307
308
309
310
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
311

312
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
313
            numpad = max(gathered_item) - gathered_item[lm.rank]
314
            padding_requests[task.OUTPUT_TYPE] += numpad
315

316
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
317
318
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
319
        eval_logger.info("Running {} requests".format(reqtype))
320
321
322
323
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
324

325
326
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
327
328
                cloned_reqs.extend([req] * req.repeats)

329
330
331
332
333
334
335
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

336
337
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
338

339
340
341
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
342
343
        if type(task) == tuple:
            group, task = task
344
345
            if task is None:
                continue
346
347
348
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
349
350
351
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
352
    for task_name, task in task_dict.items():
353
354
        if type(task) == tuple:
            group, task = task
355
356
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
357
358
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
359
        for key in task.instances[0].filtered_resps.keys():
360
361
362
363
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
364
                if task.has_test_docs()
365
366
367
368
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
369
            for doc_id, doc in doc_iterator:
370
371
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
372
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
373
374
375
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
376
377
378
379
380
381
382
383
384
385
386
387
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
388
389
390
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

391
    if lm.world_size > 1:
392
        # if multigpu, then gather data across all ranks
393
394
395
396
397
398
399
400
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
401
402
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
403
            numitem = 0
404
            if type(items[0]) == tuple:
405
406
                numitem = len(items[0])

Lintang Sutawika's avatar
Lintang Sutawika committed
407
            if isinstance(items[0], (str, list, tuple)):
408
409
410
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
411

412
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
413
            else:
414
415
416
417
418
419
420
421
422
423
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
424

425
426
427
428
429
430
431
432
433
434
435
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
436

437
438
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
439

440
        vals = vals_torch
441

442
    if lm.rank == 0:
lintangsutawika's avatar
lintangsutawika committed
443

444
445
446
447
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
448
449
            metric_key = metric + "," + key

450
            if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
451
452
453
454
                group_name, task = task
            else:
                group_name = None

455
            agg_fn = task.aggregation()[metric]
456
457
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
458

459
460
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
461
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
462
463
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
464
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
465
466
467
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
468

lintangsutawika's avatar
lintangsutawika committed
469
                if stderr is not None and len(items) > 1:
haileyschoelkopf's avatar
haileyschoelkopf committed
470
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
471
                else:
lintangsutawika's avatar
lintangsutawika committed
472
                    results[task_name][metric + "_stderr" + "," + key] = "N/A"
Fabrizio Milo's avatar
Fabrizio Milo committed
473

lintangsutawika's avatar
lintangsutawika committed
474
        if bool(results):
475
            for group, task_list in reversed(task_hierarchy.items()):
476
477
478
479
480
481
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
Lintang Sutawika's avatar
Lintang Sutawika committed
482
483
484
485
                        metrics = results[task].copy()

                        if "alias" in metrics:
                            metrics.pop("alias")
486
487
488
489
490
491
492
493
494
495
496
497
498
499

                        current_size = metrics.pop("samples")
                        # TODO: There should be a way for users
                        #       to toggle between weighted and
                        #       unweighted averaging
                        # For unweighted averaging, use:
                        #     current_size = 1

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:
                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
500
501
502
503
504
                            if stderr_score == "N/A":
                                var_score = "N/A"
                            else:
                                var_score = stderr_score**2
                                all_stderr.append(stderr)
505

506
                            metric_score = results[task][metric]
507
508
509
510
511
512
513

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
514
                                if var_score == "N/A" or results[group][stderr] == "N/A":
515
516
517
518
519
520
521
522
523
524
525
526
527
                                    results[group][stderr] = "N/A"
                                else:
                                    results[group][stderr] = (
                                        (total_size - 1) * results[group][stderr]
                                        + (current_size - 1) * var_score
                                    ) / (
                                        total_size + current_size - 1
                                    ) + total_size * current_size / (
                                        (total_size + current_size)
                                        * (total_size + current_size - 1)
                                    ) * (
                                        results[group][metric] - metric_score
                                    ) ** 2
528
529
                            else:
                                results[group][metric] = metric_score
lintangsutawika's avatar
lintangsutawika committed
530
                                results[group][stderr] = var_score
531
532
533
534
535

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
536

537
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
538

Lintang Sutawika's avatar
Lintang Sutawika committed
539
        def print_tasks(task_hierarchy, results, tab=0):
540
541
542
            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)

Lintang Sutawika's avatar
Lintang Sutawika committed
543
544
            (group_name, task_list), *_ = task_hierarchy.items()
            task_list = sorted(task_list)
545

Lintang Sutawika's avatar
Lintang Sutawika committed
546
547
548
549
            results_agg[group_name] = results[group_name].copy()
            # results_agg[group_name]["tab"] = tab
            if "samples" in results_agg[group_name]:
                results_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
550

Lintang Sutawika's avatar
Lintang Sutawika committed
551
            tab_string = " " * tab + "- " if tab > 0 else ""
lintangsutawika's avatar
lintangsutawika committed
552

Lintang Sutawika's avatar
Lintang Sutawika committed
553
554
555
556
            if "alias" in results_agg[group_name]:
                results_agg[group_name]["alias"] = (
                    tab_string + results_agg[group_name]["alias"]
                )
lintangsutawika's avatar
lintangsutawika committed
557
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
558
                results_agg[group_name]["alias"] = tab_string + group_name
lintangsutawika's avatar
lintangsutawika committed
559

Lintang Sutawika's avatar
Lintang Sutawika committed
560
561
562
563
564
            if len(task_list) > 0:
                groups_agg[group_name] = results[group_name].copy()
                # groups_agg[group_name]["tab"] = tab
                if "samples" in groups_agg[group_name]:
                    groups_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
565

Lintang Sutawika's avatar
Lintang Sutawika committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
                if "alias" in groups_agg[group_name]:
                    groups_agg[group_name]["alias"] = (
                        tab_string + groups_agg[group_name]["alias"]
                    )
                else:
                    groups_agg[group_name]["alias"] = tab_string + group_name

                for task_name in task_list:
                    if task_name in task_hierarchy:
                        _task_hierarchy = {
                            **{task_name: task_hierarchy[task_name]},
                            **task_hierarchy,
                        }
                    else:
                        _task_hierarchy = {
                            **{task_name: []},
                            **task_hierarchy,
                        }

                    _results_agg, _groups_agg = print_tasks(
                        _task_hierarchy, results, tab + 1
                    )
                    results_agg = {**results_agg, **_results_agg}
                    groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg

        results_agg = collections.defaultdict(dict)
        groups_agg = collections.defaultdict(dict)
        all_tasks_list = list(task_hierarchy.keys())
        left_tasks_list = []
        while True:
            add_tasks_list = list(k for k in results_agg.keys())
            left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list)))
            if len(left_tasks_list) == 0:
                break

            _task_hierarchy = {
                k: v for k, v in task_hierarchy.items() if k in left_tasks_list
            }
            _results_agg, _groups_agg = print_tasks(_task_hierarchy, results)

            results_agg = {**results_agg, **_results_agg}
            groups_agg = {**groups_agg, **_groups_agg}
lintangsutawika's avatar
lintangsutawika committed
610

611
        for group_name, task_list in task_hierarchy.items():
Lintang Sutawika's avatar
Lintang Sutawika committed
612
613
            if task_list != []:
                num_fewshot[group_name] = num_fewshot[task_list[0]]
614

615
        results_dict = {
616
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
617
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
618
619
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
620
            "n-shot": dict(sorted(num_fewshot.items())),
621
        }
622
623
624
625
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
626

627
628
    else:
        return None