evaluator.py 24.1 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
lintangsutawika's avatar
lintangsutawika committed
3
4
import collections

5
6
import torch

7
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
8
9

import lm_eval.api
10
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
11
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
14

lintangsutawika's avatar
lintangsutawika committed
15
16
17
18
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    get_git_commit_hash,
lintangsutawika's avatar
lintangsutawika committed
19
    simple_parse_args_string,
lintangsutawika's avatar
lintangsutawika committed
20
    eval_logger,
lintangsutawika's avatar
lintangsutawika committed
21
)
22

Fabrizio Milo's avatar
Fabrizio Milo committed
23

24
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
25
26
27
def simple_evaluate(
    model,
    model_args=None,
28
    tasks=None,
29
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
30
    batch_size=None,
31
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
32
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
33
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
34
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
35
36
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
37
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
38
39
    write_out: bool = False,
    log_samples: bool = True,
lintangsutawika's avatar
lintangsutawika committed
40
    gen_kwargs: str = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
41
):
42
    """Instantiate and evaluate a model on a list of tasks.
43

44
45
46
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
47
        String arguments for each model class, see LM.create_from_arg_string.
48
49
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
50
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
51
52
    :param num_fewshot: int
        Number of examples in few-shot context
53
    :param batch_size: int or str, optional
54
        Batch size for model
55
56
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
57
    :param device: str, optional
58
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
59
60
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
61
62
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
63
64
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
65
66
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
67
    :param write_out: bool
68
69
70
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
71
72
73
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
74
    :return
75
        Dictionary of results
76
    """
77
    random.seed(0)
78
    np.random.seed(1234)
79
80
81
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
82

83
84
    if tasks is None:
        tasks = []
85
86
87
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
88

lintangsutawika's avatar
lintangsutawika committed
89
90
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
91
        eval_logger.warning(
92
            "generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks."
lintangsutawika's avatar
udate  
lintangsutawika committed
93
        )
lintangsutawika's avatar
lintangsutawika committed
94
95
96
        if gen_kwargs == "":
            gen_kwargs = None

97
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
98
99
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
100
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
101
102
103
104
105
106
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
107
        )
108
    else:
109
        assert isinstance(model, lm_eval.api.model.LM)
110
        lm = model
111

haileyschoelkopf's avatar
haileyschoelkopf committed
112
113
114
115
116
117
118
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
119
120
121
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
122
123
        )

124
125
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
126
        task_obj = task_dict[task_name]
127
        if isinstance(task_obj, tuple):
lintangsutawika's avatar
lintangsutawika committed
128
            group, task_obj = task_obj
129
130
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
131
132

        config = task_obj._config
lintangsutawika's avatar
udate  
lintangsutawika committed
133
        if config["output_type"] == "generate_until" and gen_kwargs is not None:
lintangsutawika's avatar
lintangsutawika committed
134
            config["generation_kwargs"].update(gen_kwargs)
135

136
        if num_fewshot is not None:
137
138
139
140
            if config["num_fewshot"] == 0:
                eval_logger.info(
                    f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                )
141
            else:
142
143
144
145
146
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

147
                task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
148

Stephen Hogg's avatar
Stephen Hogg committed
149
    if check_integrity:
150
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
151

152
153
154
155
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
156
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
157
        decontamination_ngrams_path=decontamination_ngrams_path,
158
        write_out=write_out,
159
        log_samples=log_samples,
160
    )
161

162
    if lm.rank == 0:
163
164
165
166
167
168
169
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

170
171
        # add info about the model and few shot config
        results["config"] = {
172
            "model": model_name,
173
174
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
175
176
177
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
178
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
179
            "use_cache": use_cache,
180
181
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
lintangsutawika's avatar
lintangsutawika committed
182
            "gen_kwargs": gen_kwargs,
183
        }
184
        results["git_hash"] = get_git_commit_hash()
185
186
187
        return results
    else:
        return None
188

Leo Gao's avatar
Leo Gao committed
189

190
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
191

Fabrizio Milo's avatar
Fabrizio Milo committed
192

193
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
194
195
196
197
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
198
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
199
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
200
201
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
202
):
203
204
205
206
207
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
208
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
209
210
211
212
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
213
    :param write_out: bool
214
215
216
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
217
218
219
    :return
        Dictionary of results
    """
220

lintangsutawika's avatar
lintangsutawika committed
221
    # decontaminate = decontamination_ngrams_path is not None
222

223
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
224
    results = collections.defaultdict(dict)
225
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
226
    versions = collections.defaultdict(dict)
227
    # Tracks the YAML configs of all chosen tasks.
228
    configs = collections.defaultdict(dict)
229
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
230
    samples = collections.defaultdict(list)
231
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
232
    requests = collections.defaultdict(list)
233
    # Aggregated task scores presented with groups
234
    results_agg = collections.defaultdict(dict)
235
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
236
    groups_agg = collections.defaultdict(dict)
237
238
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
239
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
240
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
241
    task_hierarchy = collections.defaultdict(list)
242
243
    # store num-fewshot value per task
    num_fewshot = collections.defaultdict(int)
244

245
    # get lists of each type of request
246
    for task_name, task in task_dict.items():
247
        if isinstance(task, tuple):
lintangsutawika's avatar
lintangsutawika committed
248
249
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
250
            versions[group_name] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
251

252
        else:
253
            group_name = None
lintangsutawika's avatar
lintangsutawika committed
254
255
256
257
            task_hierarchy[task_name] = []

        if task is None:
            continue
258

Leo Gao's avatar
Leo Gao committed
259
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
260
261
        configs[task_name] = dict(task.dump_config())

262
263
264
        if "num_fewshot" in configs[task_name]:
            n_shot = configs[task_name]["num_fewshot"]
        else:
265
            n_shot = 0
266
267
        num_fewshot[task_name] = n_shot

lintangsutawika's avatar
lintangsutawika committed
268
        if "task_alias" in configs[task_name]:
Lintang Sutawika's avatar
Lintang Sutawika committed
269
            results[task_name]["alias"] = configs[task_name]["task_alias"]
lintangsutawika's avatar
lintangsutawika committed
270

lintangsutawika's avatar
format  
lintangsutawika committed
271
272
        if (
            ("group_alias" in configs[task_name])
Lintang Sutawika's avatar
Lintang Sutawika committed
273
            and (group_name not in results)
lintangsutawika's avatar
format  
lintangsutawika committed
274
            and (group_name is not None)
lintangsutawika's avatar
lintangsutawika committed
275
        ):
Lintang Sutawika's avatar
Lintang Sutawika committed
276
            results[group_name]["alias"] = configs[task_name]["group_alias"]
lintangsutawika's avatar
lintangsutawika committed
277

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
278
        if limit is not None:
279
280
281
282
283
284
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
285
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
286

287
288
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

289
        eval_logger.debug(
haileyschoelkopf's avatar
haileyschoelkopf committed
290
291
292
293
294
295
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
296
297
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
298
299
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
300
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
301
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
302

303
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
304
305
306
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
307
308

        if lm.world_size > 1:
309
310
311
312
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
313

314
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
315
            numpad = max(gathered_item) - gathered_item[lm.rank]
316
            padding_requests[task.OUTPUT_TYPE] += numpad
317

318
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
319
320
    # execute each type of request
    for reqtype, reqs in requests.items():
321
        eval_logger.info(f"Running {reqtype} requests")
322
323
324
325
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
326

327
328
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
329
330
                cloned_reqs.extend([req] * req.repeats)

331
332
333
334
335
336
337
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

338
339
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
340

341
342
343
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
344
        if isinstance(task, tuple):
345
            group, task = task
346
347
            if task is None:
                continue
348
349
350
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
351
352
353
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
354
    for task_name, task in task_dict.items():
355
        if isinstance(task, tuple):
356
            group, task = task
357
358
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
359
360
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
361
        for key in task.instances[0].filtered_resps.keys():
362
363
364
365
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
366
                if task.has_test_docs()
367
368
369
370
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
371
            for doc_id, doc in doc_iterator:
372
373
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
374
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
375
376
377
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
378
379
380
381
382
383
384
385
386
387
388
389
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
390
391
392
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

393
    if lm.world_size > 1:
394
        # if multigpu, then gather data across all ranks
395
396
397
398
399
400
401
402
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
403
404
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
405
            numitem = 0
406
            if isinstance(items[0], tuple):
407
408
                numitem = len(items[0])

Lintang Sutawika's avatar
Lintang Sutawika committed
409
            if isinstance(items[0], (str, list, tuple)):
410
411
412
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
413

414
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
415
            else:
416
417
418
419
420
421
422
423
424
425
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
426

427
428
429
430
431
432
433
434
435
436
437
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
438

439
440
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
441

442
        vals = vals_torch
443

444
    if lm.rank == 0:
lintangsutawika's avatar
lintangsutawika committed
445

446
447
448
449
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
450
451
            metric_key = metric + "," + key

452
            if isinstance(task, tuple):
lintangsutawika's avatar
lintangsutawika committed
453
454
455
456
                group_name, task = task
            else:
                group_name = None

457
            agg_fn = task.aggregation()[metric]
458
459
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
460

461
462
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
463
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
464
465
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
466
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
467
468
469
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
470

lintangsutawika's avatar
lintangsutawika committed
471
                if stderr is not None and len(items) > 1:
haileyschoelkopf's avatar
haileyschoelkopf committed
472
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
473
                else:
lintangsutawika's avatar
lintangsutawika committed
474
                    results[task_name][metric + "_stderr" + "," + key] = "N/A"
Fabrizio Milo's avatar
Fabrizio Milo committed
475

lintangsutawika's avatar
lintangsutawika committed
476
        if bool(results):
477
            for group, task_list in reversed(task_hierarchy.items()):
478
479
480
481
482
483
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
Lintang Sutawika's avatar
Lintang Sutawika committed
484
485
486
487
                        metrics = results[task].copy()

                        if "alias" in metrics:
                            metrics.pop("alias")
488
489
490
491
492
493
494
495
496
497
498
499
500
501

                        current_size = metrics.pop("samples")
                        # TODO: There should be a way for users
                        #       to toggle between weighted and
                        #       unweighted averaging
                        # For unweighted averaging, use:
                        #     current_size = 1

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:
                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
502
503
504
505
506
                            if stderr_score == "N/A":
                                var_score = "N/A"
                            else:
                                var_score = stderr_score**2
                                all_stderr.append(stderr)
507

508
                            metric_score = results[task][metric]
509
510
511
512
513
514
515

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
516
                                if var_score == "N/A" or results[group][stderr] == "N/A":
517
518
519
520
521
522
523
524
525
526
527
528
529
                                    results[group][stderr] = "N/A"
                                else:
                                    results[group][stderr] = (
                                        (total_size - 1) * results[group][stderr]
                                        + (current_size - 1) * var_score
                                    ) / (
                                        total_size + current_size - 1
                                    ) + total_size * current_size / (
                                        (total_size + current_size)
                                        * (total_size + current_size - 1)
                                    ) * (
                                        results[group][metric] - metric_score
                                    ) ** 2
530
531
                            else:
                                results[group][metric] = metric_score
lintangsutawika's avatar
lintangsutawika committed
532
                                results[group][stderr] = var_score
533
534
535
536
537

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
538

539
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
540

Lintang Sutawika's avatar
Lintang Sutawika committed
541
        def print_tasks(task_hierarchy, results, tab=0):
542
543
544
            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)

Lintang Sutawika's avatar
Lintang Sutawika committed
545
546
            (group_name, task_list), *_ = task_hierarchy.items()
            task_list = sorted(task_list)
547

Lintang Sutawika's avatar
Lintang Sutawika committed
548
549
550
551
            results_agg[group_name] = results[group_name].copy()
            # results_agg[group_name]["tab"] = tab
            if "samples" in results_agg[group_name]:
                results_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
552

Lintang Sutawika's avatar
Lintang Sutawika committed
553
            tab_string = " " * tab + "- " if tab > 0 else ""
lintangsutawika's avatar
lintangsutawika committed
554

Lintang Sutawika's avatar
Lintang Sutawika committed
555
556
557
558
            if "alias" in results_agg[group_name]:
                results_agg[group_name]["alias"] = (
                    tab_string + results_agg[group_name]["alias"]
                )
lintangsutawika's avatar
lintangsutawika committed
559
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
560
                results_agg[group_name]["alias"] = tab_string + group_name
lintangsutawika's avatar
lintangsutawika committed
561

Lintang Sutawika's avatar
Lintang Sutawika committed
562
563
564
565
566
            if len(task_list) > 0:
                groups_agg[group_name] = results[group_name].copy()
                # groups_agg[group_name]["tab"] = tab
                if "samples" in groups_agg[group_name]:
                    groups_agg[group_name].pop("samples")
lintangsutawika's avatar
lintangsutawika committed
567

Lintang Sutawika's avatar
Lintang Sutawika committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
                if "alias" in groups_agg[group_name]:
                    groups_agg[group_name]["alias"] = (
                        tab_string + groups_agg[group_name]["alias"]
                    )
                else:
                    groups_agg[group_name]["alias"] = tab_string + group_name

                for task_name in task_list:
                    if task_name in task_hierarchy:
                        _task_hierarchy = {
                            **{task_name: task_hierarchy[task_name]},
                            **task_hierarchy,
                        }
                    else:
                        _task_hierarchy = {
                            **{task_name: []},
                            **task_hierarchy,
                        }

                    _results_agg, _groups_agg = print_tasks(
                        _task_hierarchy, results, tab + 1
                    )
                    results_agg = {**results_agg, **_results_agg}
                    groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg

        results_agg = collections.defaultdict(dict)
        groups_agg = collections.defaultdict(dict)
        all_tasks_list = list(task_hierarchy.keys())
        left_tasks_list = []
        while True:
            add_tasks_list = list(k for k in results_agg.keys())
            left_tasks_list = sorted(list(set(all_tasks_list) - set(add_tasks_list)))
            if len(left_tasks_list) == 0:
                break

            _task_hierarchy = {
                k: v for k, v in task_hierarchy.items() if k in left_tasks_list
            }
            _results_agg, _groups_agg = print_tasks(_task_hierarchy, results)

            results_agg = {**results_agg, **_results_agg}
            groups_agg = {**groups_agg, **_groups_agg}
lintangsutawika's avatar
lintangsutawika committed
612

613
        for group_name, task_list in task_hierarchy.items():
Lintang Sutawika's avatar
Lintang Sutawika committed
614
615
            if task_list != []:
                num_fewshot[group_name] = num_fewshot[task_list[0]]
616

617
        results_dict = {
618
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
619
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
620
621
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
622
            "n-shot": dict(sorted(num_fewshot.items())),
623
        }
624
625
626
627
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
628

629
630
    else:
        return None