evaluator.py 31.5 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
18
19
from lm_eval.evaluator_utils import (
    consolidate_results,
    get_sample_size,
20
    get_subtask_list,
21
    get_task_list,
22
    prepare_print_tasks,
23
24
25
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
26
from lm_eval.loggers import EvaluationTracker
27
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
28
29
30
31
32
33
from lm_eval.tasks import (
    ConfigurableGroup,
    ConfigurableTask,
    TaskManager,
    get_task_dict,
)
34
35
36
37
38
39
40
from lm_eval.utils import (
    eval_logger,
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
41

Fabrizio Milo's avatar
Fabrizio Milo committed
42

43
44
45
46
47
if TYPE_CHECKING:
    from lm_eval.api.model import LM
    from lm_eval.tasks import Task


48
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
def simple_evaluate(
    model,
51
52
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
56
57
    num_fewshot: Optional[int] = None,
    batch_size: Optional[int] = None,
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
58
59
60
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
61
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
62
63
64
65
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
66
67
68
69
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
70
71
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
72
    verbosity: str = "INFO",
Baber Abbasi's avatar
Baber Abbasi committed
73
    predict_only: bool = False,
74
75
76
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
77
    fewshot_random_seed: int = 1234,
Fabrizio Milo's avatar
Fabrizio Milo committed
78
):
79
    """Instantiate and evaluate a model on a list of tasks.
80

81
82
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
83
84
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
85
        Ignored if `model` argument is a LM object.
86
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
87
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
88
89
    :param num_fewshot: int
        Number of examples in few-shot context
90
    :param batch_size: int or str, optional
91
        Batch size for model
92
93
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
94
    :param device: str, optional
95
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
96
97
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
98
99
100
101
102
103
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
104
105
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
106
    :param bootstrap_iters:
107
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
108
109
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
110
    :param write_out: bool
111
112
113
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
114
115
116
117
118
119
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
120
121
122
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Baber Abbasi's avatar
Baber Abbasi committed
123
124
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
125
126
127
128
129
130
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
131
132
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
133

134
    :return
135
        Dictionary of results
136
    """
137
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
138
    start_date = time.time()
139

140
141
142
143
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

144
    seed_message = []
145
146
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
147
        seed_message.append(f"Setting random seed to {random_seed}")
148
149
150
        random.seed(random_seed)

    if numpy_random_seed is not None:
151
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
152
153
154
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
155
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
156
157
        torch.manual_seed(torch_random_seed)

158
159
160
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

161
162
    if tasks is None:
        tasks = []
163
164
165
166
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
167

lintangsutawika's avatar
lintangsutawika committed
168
169
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
170
        eval_logger.warning(
171
172
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
173
        )
lintangsutawika's avatar
lintangsutawika committed
174
175
176
        if gen_kwargs == "":
            gen_kwargs = None

177
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
178
        if model_args is None:
179
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
180
            model_args = ""
181

182
        if isinstance(model_args, dict):
183
184
185
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
186
187
188
189
190
191
192
193
194
195
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
196
197
198
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
199
200
201
202
203
204
205
206
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
207
    else:
208
209
        if not isinstance(model, lm_eval.api.model.LM):
            raise TypeError
210
        eval_logger.info("Using pre-initialized model")
211
        lm = model
212

haileyschoelkopf's avatar
haileyschoelkopf committed
213
    if use_cache is not None:
214
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
215
216
217
218
219
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
220
221
222
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
223
224
        )

225
226
227
228
    if task_manager is None:
        task_manager = TaskManager(verbosity)

    task_dict = get_task_dict(tasks, task_manager)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
229

lintangsutawika's avatar
lintangsutawika committed
230
    def _adjust_config(task_dict, predict_only):
231
232
233
234
235
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
236
                    **{task_name: _adjust_config(task_obj, predict_only)},
237
                }
Stephen Hogg's avatar
Stephen Hogg committed
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            else:
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
267
268
269
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
270
                        task_obj.set_config(key="num_fewshot", value=0)
271
272
273
274
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)
                eval_logger.info(
                    f"Setting fewshot random generator seed to {fewshot_random_seed}"
Baber Abbasi's avatar
Baber Abbasi committed
275
                )
276

277
278
279
280
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

lintangsutawika's avatar
lintangsutawika committed
281
    task_dict = _adjust_config(task_dict, predict_only)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
282

Stephen Hogg's avatar
Stephen Hogg committed
283
    if check_integrity:
284
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
285

KonradSzafer's avatar
KonradSzafer committed
286
287
288
289
290
291
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
            chat_template=lm.chat_template if apply_chat_template else None,
292
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
293
294
        )

295
296
297
298
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
299
300
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
301
        bootstrap_iters=bootstrap_iters,
302
        write_out=write_out,
303
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
304
305
306
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
307
        verbosity=verbosity,
308
    )
309

310
    if lm.rank == 0:
311
312
313
314
315
316
317
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

318
319
        # add info about the model and few shot config
        results["config"] = {
320
            "model": model_name,
321
322
            "model_args": model_args,
        }
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
338
339
340
341
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
342
343
            }
        )
344
        results["git_hash"] = get_git_commit_hash()
345
        results["date"] = start_date
346
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
347
        add_tokenizer_info(results, lm)  # additional info about tokenizer
348
349
350
        return results
    else:
        return None
351

Leo Gao's avatar
Leo Gao committed
352

353
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
354
def evaluate(
355
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
356
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
357
    limit: Optional[int] = None,
358
359
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
360
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
361
362
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
363
364
365
    system_instruction: Optional[str] = None,
    apply_chat_template: bool = False,
    fewshot_as_multiturn: bool = False,
366
    verbosity: str = "INFO",
Fabrizio Milo's avatar
Fabrizio Milo committed
367
):
368
369
370
371
372
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
373
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
374
375
376
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
377
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
378
    :param write_out: bool
379
380
381
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
382
383
384
385
386
387
    :param system_instruction: str
        System instruction to be applied to the prompt
    :param apply_chat_template: bool
        If True, apply chat template to the prompt
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
388
389
390
    :return
        Dictionary of results
    """
391

392
    eval_logger.setLevel(getattr(logging, f"{verbosity}"))
393

394
    # tracks all Instances/requests a model must generate output on.
395
    requests = defaultdict(list)
396
397
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
398
    padding_requests = defaultdict(int)
399

400
    # get lists of group hierarchy and each type of request
401
    eval_tasks = get_task_list(task_dict)
402
    if not log_samples:
403
        if not all(
404
405
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
406
407
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
408
409
410
    for task_output in eval_tasks:
        task: Task = task_output.task
        limit = get_sample_size(task, limit)
411
412
413
414
415
416
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
417
418
419
            system_instruction=system_instruction,
            apply_chat_template=apply_chat_template,
            fewshot_as_multiturn=fewshot_as_multiturn,
420
421
422
423
424
425
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
426
        )
427
        eval_logger.debug(
428
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
429
430
        )
        if write_out:
431
            print_writeout(task)
432
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
433
434
435
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
436
437

        if lm.world_size > 1:
438
439
440
441
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
442
443
444
445
446
447
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
448
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
449
            numpad = max(gathered_item) - gathered_item[lm.rank]
450
451
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
452

453
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
454
455
    # execute each type of request
    for reqtype, reqs in requests.items():
456
        eval_logger.info(f"Running {reqtype} requests")
457
458
459
460
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
461

462
463
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
464
465
                cloned_reqs.extend([req] * req.repeats)

466
467
468
469
470
471
472
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

473
474
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
475

476
477
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
478
479
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
480
481
    for task_output in eval_tasks:
        task = task_output.task
482
483
        task.apply_filters()

484
485
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
486
        # TODO: make it possible to use a different metric per filter
487
        # Pre-process task.instances to group by doc_id
488
        instances_by_doc_id = defaultdict(list)
489
490
491
492
493
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
494
        # iterate over different filters used
495
496
497
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
498
            )
499
            for doc_id, doc in doc_iterator:
500
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
501
                metrics = task.process_results(
502
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
503
                )
504
505
506
507
508
509
510
511
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
512
513
514
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
515
516
517
518
519
520
521
522
523
524
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
525
526
                    }
                    example.update(metrics)
527
                    task_output.logged_samples.append(example)
528
                for metric, value in metrics.items():
529
                    task_output.sample_metrics[(metric, filter_key)].append(value)
530

531
532
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
533
        # first gather logged samples across all ranks
534
535
536
537
538
539
540
541
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
542
                )
543

544
545
546
547
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
548

549
550
551
552
553
554
555
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
556
                )
557
558
559
560
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
561

562
    if RANK == 0:
563
564
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
565
566
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
567
568
569
570
571
572
573
574
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
575

576
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
577
        if bool(results):
578

579
580
            def process_group(
                results,
lintangsutawika's avatar
lintangsutawika committed
581
                versions,
582
583
584
                task_dict,
                task_root=None,
                show_group_table=False,
585
                task_aggregation_list=None,
586
            ):
587
588
589
                if task_root is None:
                    task_root = {}

590
591
                if task_aggregation_list is None:
                    task_aggregation_list = {}
592
593

                for group_or_task, group_or_task_info in task_dict.items():
594
                    # Convert to string
595
596
                    if isinstance(group_or_task, ConfigurableGroup):
                        group_config = group_or_task.config
lintangsutawika's avatar
lintangsutawika committed
597
                        group_or_task = group_or_task.task_id
598
599
                    else:
                        group_config = None
600

601
602
                    if isinstance(group_or_task_info, ConfigurableTask):
                        if task_root:
603
                            task_aggregation_list.setdefault(task_root, []).append(
lintangsutawika's avatar
lintangsutawika committed
604
                                group_or_task_info.task_id
605
                            )
606
                    else:
lintangsutawika's avatar
lintangsutawika committed
607
608
609
610
                        (
                            results,
                            versions,
                            show_group_table,
611
                            _task_aggregation_list,
lintangsutawika's avatar
lintangsutawika committed
612
                        ) = process_group(
613
                            results,
lintangsutawika's avatar
lintangsutawika committed
614
                            versions,
615
616
617
                            group_or_task_info,
                            group_or_task,
                            show_group_table,
618
                            task_aggregation_list,
619
                        )
620
                        if task_root:
621
622
                            task_aggregation_list.setdefault(task_root, []).extend(
                                task_aggregation_list.get(group_or_task, [])
623
                            )
624

lintangsutawika's avatar
lintangsutawika committed
625
                        if (group_config is None) or (
626
                            group_config["aggregate_metric"] is None
lintangsutawika's avatar
lintangsutawika committed
627
                        ):
628
629
630
                            results[group_or_task][" "] = " "
                            continue

631
632
633
634
635
                        if "aggregate_metric" in group_config:
                            agg_metric_list = group_config["aggregate_metric"]

                        show_group_table = show_group_table | bool(
                            group_config["aggregate_metric"]
636
637
                        )

638
                        task_list = _task_aggregation_list[group_or_task]
lintangsutawika's avatar
lintangsutawika committed
639

640
641
642
643
644
                        metric_list = list(
                            {
                                key
                                for task in task_list
                                for key in results[task].keys()
645
                                if "_stderr" not in key
646
                                and key not in ["task", "alias", "samples"]
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
                            }
                        )
                        for metric in metric_list:
                            stderr = "_stderr,".join(metric.split(","))

                            # gather metrics, sizes, and stderrs from subtasks
                            metrics = [
                                results[task][metric]
                                for task in task_list
                                if metric in results[task]
                            ]  # TODO: copy?
                            stderrs = [
                                results[task][stderr]
                                for task in task_list
                                if stderr in results[task]
                            ]
                            sizes = [
                                results[task]["samples"]
                                for task in task_list
                                if metric in results[task]
                            ]

669
670
                            for metric_config in agg_metric_list:
                                for filter in metric_config["filter_list"]:
lintangsutawika's avatar
lintangsutawika committed
671
672
673
                                    if metric != ",".join(
                                        [metric_config["metric"], filter]
                                    ):
674
675
676
677
                                        continue

                                    # compute group's pooled metric and stderr
                                    if metric_config["aggregation"] == "mean":
lintangsutawika's avatar
lintangsutawika committed
678
                                        aggregate_fn = lm_eval.api.metrics.aggregate_subtask_metrics
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
                                    else:
                                        aggregate_fn = metric_config["aggregation"]

                                    results[group_or_task][metric] = aggregate_fn(
                                        metrics,
                                        sizes,
                                        metric_config["weight_by_size"],
                                    )
                                    # TODO: calculate grouped metric using aggregation fn
                                    if "N/A" in stderrs:
                                        results[group_or_task][stderr] = "N/A"
                                    else:
                                        results[group_or_task][
                                            stderr
                                        ] = lm_eval.api.metrics.pooled_sample_stderr(
                                            stderrs, sizes
                                        )
                                        # TODO: allow GroupConfigs to choose which variance formula is used, for back-compatibility
                                        # To use the old (likely incorrect) variance formula, comment out the above and uncomment this line:
                                        # results[group][stderr] = lm_eval.api.metrics.combined_sample_stderr(stderrs, sizes, metrics=metrics)
699

700
                            results[group_or_task]["samples"] = sum(sizes)
lintangsutawika's avatar
lintangsutawika committed
701
702
703
704
705
                            group_metadata = group_config.get("metadata", None)
                            if group_metadata is not None:
                                versions[group_or_task] = group_metadata.get(
                                    "version", None
                                )
706
                # print(results)
707
                return results, versions, show_group_table, task_aggregation_list
708

709
            results, versions, show_group_table, *_ = process_group(
lintangsutawika's avatar
lintangsutawika committed
710
                results, versions, task_dict
711
712
            )

713
        results_agg, group_agg = prepare_print_tasks(task_dict, results)
714
715
        subtask_list = get_subtask_list(task_dict)

716
717
718
719
720
721
722
723
724
        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            for task in task_list:
                for m, h in higher_is_better[task].items():
                    if m not in _higher_is_better.keys():
                        _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
725
726
727
728
729
730
731
732
733
734

                    if (
                        m in _higher_is_better
                        and _higher_is_better[m] is not None
                        and _higher_is_better[m] != h
                    ):
                        eval_logger.warning(
                            f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                        )
                        _higher_is_better[m] = None
735
            higher_is_better[group] = _higher_is_better
736

737
        results_dict = {
738
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
739
740
741
742
743
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
744
            "group_subtasks": dict(reversed(subtask_list.items())),
745
746
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
747
            "n-shot": dict(sorted(num_fewshot.items())),
748
            "higher_is_better": dict(sorted(higher_is_better.items())),
749
750
751
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
752
753
754
755
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
756
757
758
                }
                for task_output in eval_tasks
            },
759
        }
760
761
762
763
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
764

765
766
    else:
        return None
767
768
769
770


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
771
772
773
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
774
775
776
    }

    return request_caching_args