evaluator.py 32.3 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
29
from lm_eval.tasks import TaskManager, get_task_dict
30
31
32
33
from lm_eval.utils import (
    handle_non_serializable,
    hash_string,
    positional_deprecated,
Baber Abbasi's avatar
Baber Abbasi committed
34
    setup_logging,
35
36
    simple_parse_args_string,
)
37

Fabrizio Milo's avatar
Fabrizio Milo committed
38

39
40
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
41
    from lm_eval.api.task import Task
42

Lintang Sutawika's avatar
Lintang Sutawika committed
43
44
eval_logger = logging.getLogger(__name__)

45

46
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
47
48
def simple_evaluate(
    model,
49
50
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
51
    num_fewshot: Optional[int] = None,
52
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
54
55
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
56
57
58
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
59
    limit: Optional[Union[int, float]] = None,
60
    samples: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
61
62
63
64
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
65
66
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
67
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
68
    fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
69
    gen_kwargs: Union[str, dict, None] = None,
70
    task_manager: Optional[TaskManager] = None,
Baber Abbasi's avatar
Baber Abbasi committed
71
    verbosity=None,
Baber Abbasi's avatar
Baber Abbasi committed
72
    predict_only: bool = False,
73
74
75
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
76
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
77
    confirm_run_unsafe_code: bool = False,
Baber's avatar
Baber committed
78
    strip_reasoning: Union[bool, str] = False,
Baber Abbasi's avatar
Baber Abbasi committed
79
    metadata: Optional[dict] = None,
Fabrizio Milo's avatar
Fabrizio Milo committed
80
):
81
    """Instantiate and evaluate a model on a list of tasks.
82

83
84
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
85
86
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
87
        Ignored if `model` argument is a LM object.
88
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
89
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
90
91
    :param num_fewshot: int
        Number of examples in few-shot context
92
    :param batch_size: int or str, optional
93
        Batch size for model
94
95
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
96
    :param device: str, optional
97
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
98
99
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
100
101
102
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
103
        Rewrites all the request cache if set to `True`. `None` if not desired.
104
    :param delete_requests_cache: bool, optional
Baber Abbasi's avatar
Baber Abbasi committed
105
        Deletes all the request cache if set to `True`. `None` if not desired.
106
107
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
108
109
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
110
    :param bootstrap_iters:
111
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
112
113
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
114
    :param write_out: bool
115
116
117
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
Baber's avatar
Baber committed
118
119
120
121
    :param evaluation_tracker: EvaluationTracker
        An EvaluationTracker instance to track the evaluation process.
        If None, no tracking will be done.
        If provided, it will log the experiment arguments and results.
KonradSzafer's avatar
KonradSzafer committed
122
123
    :param system_instruction: str
        System instruction to be applied to the prompt
124
125
126
127
128
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
129
130
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Baber Abbasi's avatar
Baber Abbasi committed
131
132
    :param gen_kwargs: dict or comma-separated string
        Arguments for model generation
133
        Ignored for all tasks with loglikelihood output_type
Baber's avatar
Baber committed
134
135
136
    :param task_manager: TaskManager
        TaskManager instance to manage tasks. If None, a new TaskManager will be created.
    :param verbosity: str (deprecated - use LOGLEVEL environment variable)
Lintang Sutawika's avatar
Lintang Sutawika committed
137
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
138
139
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
140
141
142
143
144
145
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
146
147
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber's avatar
Baber committed
148
149
150
151
152
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe (code). If set to False, an error will be raised if an unsafe task is encountered.
    :param strip_reasoning: bool or str
        If set, will strip reasoning from task outputs. This is useful for tasks that have reasoning in the output.
        The value of this argument will be passed to the `suffix` argument of the `strip_reasoning` filter.
Baber Abbasi's avatar
Baber Abbasi committed
153
154
    :param metadata: dict
        Additional metadata to be added to the task manager. Will get passed to the download function of the task.
Baber Abbasi's avatar
Baber Abbasi committed
155

Baber Abbasi's avatar
Baber Abbasi committed
156
    return
157
        Dictionary of results
158
    """
Baber Abbasi's avatar
Baber Abbasi committed
159
160
    if verbosity is not None:
        setup_logging(verbosity=verbosity)
161
    start_date = time.time()
162

163
164
165
166
167
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )

168
169
170
171
172
173
174
    if (
        (isinstance(model_args, str) and "inst" in model_args.lower())
        or (
            isinstance(model_args, dict)
            and any("inst" in str(v).lower() for v in model_args.values())
        )
    ) and not apply_chat_template:
Baber Abbasi's avatar
Baber Abbasi committed
175
        eval_logger.warning(
176
            "Model appears to be an instruct variant but chat template is not applied. Recommend setting `apply_chat_template` (optionally `fewshot_as_multiturn`)."
Baber Abbasi's avatar
Baber Abbasi committed
177
178
        )

179
180
181
182
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

183
    seed_message = []
184
185
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
186
        seed_message.append(f"Setting random seed to {random_seed}")
187
188
189
        random.seed(random_seed)

    if numpy_random_seed is not None:
190
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
191
192
193
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
194
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
195
196
        torch.manual_seed(torch_random_seed)

197
198
199
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

200
201
202
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

203
204
    if tasks is None:
        tasks = []
205
206
207
208
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
209

lintangsutawika's avatar
lintangsutawika committed
210
    if gen_kwargs is not None:
Baber Abbasi's avatar
Baber Abbasi committed
211
212
        if isinstance(gen_kwargs, str):
            gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
213
        eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
214
            f"generation_kwargs: {gen_kwargs} specified through cli, these settings will update set parameters in yaml tasks. "
215
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
216
        )
Baber Abbasi's avatar
Baber Abbasi committed
217
        if not gen_kwargs:
lintangsutawika's avatar
lintangsutawika committed
218
219
            gen_kwargs = None

220
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
221
        if model_args is None:
222
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
223
            model_args = ""
224

225
        if isinstance(model_args, dict):
226
227
228
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
229
230
231
232
233
234
235
236
237
238
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
239
240
241
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
242
243
244
245
246
247
248
249
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
250
    else:
251
        if not isinstance(model, lm_eval.api.model.LM):
252
253
254
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
255
        eval_logger.info("Using pre-initialized model")
256
        lm = model
257

haileyschoelkopf's avatar
haileyschoelkopf committed
258
    if use_cache is not None:
259
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
260
261
262
263
264
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
265
266
267
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
268
269
        )

270
    if task_manager is None:
Baber Abbasi's avatar
Baber Abbasi committed
271
272
273
274
275
276
277
278
        metadata = (
            simple_parse_args_string(model_args)
            if isinstance(model_args, str)
            else model_args
            if isinstance(model_args, dict)
            else {}
        ) | (metadata or {})
        task_manager = TaskManager(metadata=metadata)
279

Baber Abbasi's avatar
Baber Abbasi committed
280
281
282
283
    task_dict = get_task_dict(
        tasks,
        task_manager,
    )
Baber Abbasi's avatar
Baber Abbasi committed
284

Lintang Sutawika's avatar
Lintang Sutawika committed
285
286
287
288
289
290
291
292
293
294
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
295

296
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
297
298
299
300
301
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )
Baber Abbasi's avatar
Baber Abbasi committed
302
303
304
                    eval_logger.info(
                        f"{task_obj.config.task}: Using gen_kwargs: {task_obj.config.generation_kwargs}"
                    )
Lintang Sutawika's avatar
Lintang Sutawika committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

Baber's avatar
Baber committed
334
                if strip_reasoning and task_obj.OUTPUT_TYPE == "generate_until":
Baber's avatar
Baber committed
335
                    eval_logger.info(
Baber's avatar
Baber committed
336
                        f"Stripping reasoning from {task_name} task outputs using {strip_reasoning}."
Baber's avatar
Baber committed
337
338
339
340
341
342
                    )
                    task_obj.overide_filter(
                        "strip_reasoning",
                        **({"suffix": strip_reasoning} if strip_reasoning else {}),
                    )

Lintang Sutawika's avatar
Lintang Sutawika committed
343
344
345
346
347
                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
348

Stephen Hogg's avatar
Stephen Hogg committed
349
    if check_integrity:
350
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
351

KonradSzafer's avatar
KonradSzafer committed
352
353
354
355
356
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
357
358
359
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
360
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
361
362
        )

363
364
365
366
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
367
        samples=samples,
368
369
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
370
        bootstrap_iters=bootstrap_iters,
371
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
372
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
373
374
375
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
376
        verbosity=verbosity,
Hojin Lee's avatar
Hojin Lee committed
377
        confirm_run_unsafe_code=confirm_run_unsafe_code,
378
    )
Baber Abbasi's avatar
Baber Abbasi committed
379
    if verbosity is not None:
Zeyuan Allen-Zhu's avatar
Zeyuan Allen-Zhu committed
380
        setup_logging(verbosity=verbosity)
381

382
    if lm.rank == 0:
383
384
385
386
387
388
389
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

390
391
        # add info about the model and few shot config
        results["config"] = {
392
            "model": model_name,
393
394
            "model_args": model_args,
        }
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
410
411
412
413
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
414
415
            }
        )
416
        results["git_hash"] = get_git_commit_hash()
417
        results["date"] = start_date
418
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
419
        add_tokenizer_info(results, lm)  # additional info about tokenizer
420
421
422
        return results
    else:
        return None
423

Leo Gao's avatar
Leo Gao committed
424

425
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
426
def evaluate(
427
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
428
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
429
    limit: Optional[int] = None,
430
    samples: Optional[dict] = None,
431
432
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
433
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
434
435
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
436
    system_instruction: Optional[str] = None,
437
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
438
    fewshot_as_multiturn: bool = False,
439
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
440
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
441
):
442
443
444
445
446
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
447
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
448
449
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
450
451
    :param samples: dictionary, optional
        Dictionary indicating which examples should be tested in each task, e.g., {"mmlu_astronomy":[0,3,6],"mmlu_anatomy":[1,4,7,10]}.
Hojin Lee's avatar
Hojin Lee committed
452
453
454
455
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
456
    :param bootstrap_iters:
457
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
458
    :param write_out: bool
459
460
461
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
462
463
    :param system_instruction: str
        System instruction to be applied to the prompt
464
465
466
467
468
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
469
470
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
471
472
473
474
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
475
476
477
    :return
        Dictionary of results
    """
478

479
480
481
482
483
484
    if limit is not None and samples is not None:
        raise ValueError(
            "Either 'limit' or 'samples' must be None, but both are not None."
        )
    if samples is not None:
        eval_logger.info(f"Evaluating examples for tasks {list(samples.keys())}")
485
486
487
488
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )
489
    # tracks all Instances/requests a model must generate output on.
490
    requests = defaultdict(list)
491
492
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
493
    padding_requests = defaultdict(int)
494

495
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
496
    eval_tasks = get_task_list(task_dict)
497
    if not log_samples:
498
        if not all(
499
500
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
501
502
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
503

Hojin Lee's avatar
Hojin Lee committed
504
505
506
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
507
    incompatible_tasks = []
508
509
    for task_output in eval_tasks:
        task: Task = task_output.task
510

511
        if getattr(task, "MULTIMODAL", False) and not getattr(lm, "MULTIMODAL", False):
512
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
513
514
515
516
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
517
518
519
520
521
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
Hojin Lee's avatar
Hojin Lee committed
522
    # end validation check
523

Chenjie Luo's avatar
Chenjie Luo committed
524
525
526
    # Cache the limit arg.
    limit_arg = limit
    limits = []
527
528
529
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
530
531
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
532
533
        task.build_all_requests(
            limit=limit,
534
535
536
            samples=samples.get(task_output.task_name, None)
            if samples is not None
            else samples,
537
538
539
540
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
541
            system_instruction=system_instruction,
542
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
543
            fewshot_as_multiturn=fewshot_as_multiturn,
544
545
546
547
548
549
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
550
        )
551
        eval_logger.debug(
552
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
553
554
        )
        if write_out:
555
            print_writeout(task)
556
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
557
558
559
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
560
561

        if lm.world_size > 1:
562
563
564
565
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
566
567
568
569
570
571
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
572
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
573
            numpad = max(gathered_item) - gathered_item[lm.rank]
574
575
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
576

577
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
578
579
    # execute each type of request
    for reqtype, reqs in requests.items():
580
        eval_logger.info(f"Running {reqtype} requests")
581
582
583
584
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
585

586
587
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
588
589
                cloned_reqs.extend([req] * req.repeats)

590
591
592
593
594
595
596
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

597
598
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
599

600
601
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
602
603
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
604
    for task_output, limit in zip(eval_tasks, limits):
605
        task = task_output.task
606
607
        task.apply_filters()

608
609
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
610
        # TODO: make it possible to use a different metric per filter
611
        # Pre-process task.instances to group by doc_id
612
        instances_by_doc_id = defaultdict(list)
613
614
615
616
617
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
618
        # iterate over different filters used
619
        for filter_key in task.instances[0].filtered_resps.keys():
620
621
622
623
624
            indices = (
                samples.get(task_output.task_name, None)
                if samples is not None
                else None
            )
625
            doc_iterator = task.doc_iterator(
626
627
628
629
                rank=RANK,
                limit=limit,
                world_size=WORLD_SIZE,
                samples=indices,
630
            )
631
            for doc_id, doc in doc_iterator:
632
633
634
635
                if indices:
                    doc_id_true = indices[doc_id]
                else:
                    doc_id_true = doc_id
636
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
637
                metrics = task.process_results(
638
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
639
                )
640
641
642
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
643
                        "doc_id": doc_id_true,
644
645
646
647
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
648
649
650
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
651
652
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
653
654
655
656
657
658
659
660
661
662
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
663
664
                    }
                    example.update(metrics)
665
                    task_output.logged_samples.append(example)
666
                for metric, value in metrics.items():
667
                    task_output.sample_metrics[(metric, filter_key)].append(value)
668

669
670
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
671
        # first gather logged samples across all ranks
672
673
674
675
676
677
678
679
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
680
                )
681

682
683
684
685
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
686

687
688
689
690
691
692
693
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
694
                )
695
696
697
698
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
699

700
    if RANK == 0:
701
702
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
703
704
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
705
706
707
708
709
710
711
712
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
713

714
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
715
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
731
732
733
734
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
735

Lintang Sutawika's avatar
Lintang Sutawika committed
736
737
738
739
740
741
742
743
744
745
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
746

747
        results_dict = {
748
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
749
750
751
752
753
754
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
755
756
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
757
            "n-shot": dict(sorted(num_fewshot.items())),
758
            "higher_is_better": dict(sorted(higher_is_better.items())),
759
760
761
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
762
763
764
765
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
766
                }
Chenjie Luo's avatar
Chenjie Luo committed
767
                for task_output, limit in zip(eval_tasks, limits)
768
            },
769
        }
770
771
772
773
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
774

775
776
    else:
        return None
777
778
779
780


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
781
782
783
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
784
785
786
    }

    return request_caching_args