huggingface.py 62.6 KB
Newer Older
1
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
2
import logging
3
import os
Jeevan's avatar
Jeevan committed
4
from datetime import timedelta
5
from pathlib import Path
6
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union
7

8
import jinja2
9
import torch
10
import torch.nn.functional as F
11
import transformers
Jeevan's avatar
Jeevan committed
12
13
14
15
16
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
17
from accelerate.utils import get_max_memory
18
from huggingface_hub import HfApi
19
20
from packaging import version
from tqdm import tqdm
21
22
23
24
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
25
26

from lm_eval import utils
baberabb's avatar
baberabb committed
27
from lm_eval.api.instance import Instance
28
from lm_eval.api.model import TemplateLM
29
from lm_eval.api.registry import register_model
Baber's avatar
Baber committed
30
from lm_eval.api.types import GenerateInput, GenerateOutput, LoglikelihoodOutput
31
32
33
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
34
    configure_pad_token,
35
    get_dtype,
36
    handle_stop_sequences,
37
38
39
    pad_and_concat,
    stop_sequences_criteria,
)
40

41

42
43
44
if TYPE_CHECKING:
    from transformers.quantizers import AutoQuantizationConfig

Lintang Sutawika's avatar
Lintang Sutawika committed
45
eval_logger = logging.getLogger(__name__)
46

lintangsutawika's avatar
lintangsutawika committed
47

48
@register_model("hf-auto", "hf", "huggingface")
49
class HFLM(TemplateLM):
50
51
52
53
54
55
56
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

57
    AUTO_MODEL_CLASS = None
58
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
59

60
61
    def __init__(
        self,
62
        pretrained: Union[str, transformers.PreTrainedModel],
63
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
64
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
65
        revision: Optional[str] = "main",
66
        subfolder: str = "",
67
68
69
70
71
72
73
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
74
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
75
        logits_cache: bool = True,
76
77
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
78
        dtype: Optional[Union[str, torch.dtype]] = "auto",
79
        softmax_dtype: Optional[Union[str, torch.dtype]] = None,
Benjamin Fattori's avatar
Benjamin Fattori committed
80
81
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
82
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
83
        use_fast_tokenizer: Optional[bool] = True,
84
        add_bos_token: Optional[bool] = False,
85
        prefix_token_id: Optional[int] = None,
86
        # arguments used for splitting a model across GPUs naively.
87
88
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
89
90
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
91
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
92
        # PEFT, delta weights and quantization options
93
        peft: Optional[str] = None,
94
        delta: Optional[str] = None,
95
        autogptq: Optional[Union[bool, str]] = False,
96
        gptqmodel: Optional[bool] = False,
97
        gguf_file: Optional[str] = None,
98
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
99
    ) -> None:
100
        super().__init__()
101
102
103
104
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
105
            )
Baber Abbasi's avatar
Baber Abbasi committed
106
107
108
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
109
110
111
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
112
            gpus = 0
113

114
        else:
115
116
117
118
119
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
120
121
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
122
123
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
124

125
126
127
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
128
            # using one process with no model parallelism
129
130
131
132
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
133
                    + [f"cuda:{i}" for i in range(gpus)]
134
                    + ["mps", "mps:0"]
135
                    + [f"npu:{i}" for i in range(gpus)]
136
                )
137
                if device and device in device_list:
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
154
            else:  # Parallelism managed by accelerate
155
156
157
158
159
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
160
161
162
163
164
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
165

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
166
            revision = str(revision)  # cast to string if not already one
167

168
            self._get_config(
169
170
171
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
172
                gguf_file=gguf_file,
173
                subfolder=subfolder,
174
175
            )

176
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
177
178
179
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
180

181
182
183
184
185
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
186
            subfolder=subfolder,
187
188
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
189
            gguf_file=gguf_file,
190
            add_bos_token=add_bos_token,
191
192
        )

193
194
195
196
197
198
199
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

200
201
202
203
204
205
206
207
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
208
                gpus=gpus,
209
210
211
212
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
213
                delta=delta,
214
                autogptq=autogptq,
215
                gptqmodel=gptqmodel,
216
                gguf_file=gguf_file,
217
                quantization_config=quantization_config,
218
                subfolder=subfolder,
219
                **kwargs,
220
221
            )

222
        # access self._model through self.model property outside this method
223
224
225
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
226

lintangsutawika's avatar
lintangsutawika committed
227
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
228
        self.logits_cache = logits_cache
229
        self.vocab_size = self.tokenizer.vocab_size
230
        # select (or create) a pad token to use
231
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
232

233
        self.add_bos_token = add_bos_token
234
        if "gemma" in getattr(self.config, "model_type", ""):
235
            self.add_bos_token = True
236
            eval_logger.info(
237
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
238
239
            )

240
        self._max_length = max_length
241
242
243
244
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
245
246
247
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
248
249
250
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
251
252
253
254
255
256
257

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
258

259
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
260
261
262
263
264
265
266
267
268
269
270
271
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
272
273
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
274
275
276
277
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
278
                        )
Nathan Habib's avatar
Nathan Habib committed
279
                    elif gpus > accelerator.num_processes:
280
281
282
283
284
285
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
286
287
288
289
290
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

291
                    self._device = torch.device(f"{accelerator.device}")
292
                    self.accelerator = accelerator
293

294
295
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
296
297
298
299
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
300
301
302
303
304
305
306
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
307

308
        self.custom_prefix_token_id = prefix_token_id
309
310
311
312
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
313

Nathan Habib's avatar
Nathan Habib committed
314
315
    def _get_accelerate_args(
        self,
316
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
363
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
364
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
365
                else:
Nathan Habib's avatar
Nathan Habib committed
366
367
368
369
370
371
372
373
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
374
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
375
            eval_logger.info(
376
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

402
403
404
405
406
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

407
408
409
410
411
412
413
414
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

415
416
417
418
419
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

420
421
422
423
424
425
426
427
428
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

429
430
    @property
    def max_length(self):
431
432
433
434
435
436
437
438
439
440
441
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
442

443
    @property
Ethan Smith's avatar
Ethan Smith committed
444
    def max_gen_toks(self) -> int:
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
463
464
465
466
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

467
468
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
469
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
470
        backend: Literal["default", "causal", "seq2seq"] = "default",
471
472
473
474
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
475
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
476
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
477
478
479

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
480
        """
481

482
483
484
485
486
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
487
                self.backend = backend
488
            elif backend == "seq2seq":
489
                self.backend = backend
490
            eval_logger.info(
491
                f"Overrode HF model backend type, and using type '{self.backend}'"
492
493
494
495
496
497
498
499
500
501
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
502
                self.backend = "seq2seq"
503
                eval_logger.debug(f"Using model type '{self.backend}'")
504
505
506
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
507
                self.backend = "causal"
508
                eval_logger.debug(f"Using model type '{self.backend}'")
509
510
511
512
513
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
514
                        "Setting backend to causal"
515
516
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
517
518
519
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
520
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
521
                )
522

523
524
525
526
527
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
528
529
530
531
532
533

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
534
        gguf_file: Optional[str] = None,
535
        subfolder: str = "",
536
    ) -> None:
537
        """Return the model config for HuggingFace models"""
538
539
540
541
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
542
            gguf_file=gguf_file,
543
            subfolder=subfolder,
544
545
546
547
548
549
550
551
552
553
554
555
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
556
        gpus: Optional[int] = None,
557
558
559
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
560
        # PEFT, delta weights and quantization options
561
        peft: Optional[str] = None,
562
        delta: Optional[str] = None,
563
        autogptq: Optional[Union[bool, str]] = False,
564
        gptqmodel: Optional[bool] = False,
565
        gguf_file: Optional[str] = None,
566
        quantization_config: Optional["AutoQuantizationConfig"] = None,
567
        subfolder: str = "",
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
584
585
586
587
588
589
590
591
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
592
            )
Nathan Habib's avatar
Nathan Habib committed
593
        )
594

595
        if not autogptq and not gptqmodel:
596
            if model_kwargs.get("load_in_4bit", None):
Baber Abbasi's avatar
Baber Abbasi committed
597
598
599
                assert transformers.__version__ >= "4.30.0", (
                    "load_in_4bit requires transformers >= 4.30.0"
                )
600
601
602
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
603
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
604
605
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
606

607
608
609
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
610
                torch_dtype=get_dtype(dtype),
611
                trust_remote_code=trust_remote_code,
612
                gguf_file=gguf_file,
613
                quantization_config=quantization_config,
614
                subfolder=subfolder,
615
616
617
                **model_kwargs,
            )
        else:
618
619
620
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
621
622
                )

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
654

655
656
657
658
659
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

660
        if peft:
661
662
663
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

664
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
665
666
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
667
668
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
669
670
671
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
672
                self._model.resize_token_embeddings(len(self.tokenizer))
673
674
675
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
715
        gguf_file: Optional[str] = None,
716
        add_bos_token: Optional[bool] = False,
717
        subfolder: Optional[str] = "",
718
719
720
721
722
723
724
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
725
726
727
728
729
730
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
731
        if not tokenizer and gguf_file is not None:
732
733
734
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
735

736
737
738
        if add_bos_token:
            kwargs["add_bos_token"] = True

739
740
741
        if subfolder:
            kwargs["subfolder"] = subfolder

742
743
744
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
745
                    tokenizer, **kwargs
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
760
                model_name, **kwargs
761
762
763
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
764
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
765
766
767
768
769
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
770
771
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
772
773
        else:
            max_length = self.max_length
774
775
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
776

Benjamin Fattori's avatar
Benjamin Fattori committed
777
778
779
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
780
            if self.backend == "seq2seq":
781
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
782
783
784
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
785
786
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
787
788
789
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
790
791
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
792
793
794
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
795
            for _ in range(5):
796
797
798
799
800
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
801

Benjamin Fattori's avatar
Benjamin Fattori committed
802
803
            return batch_size

804
805
806
807
808
809
810
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
811

812
813
814
815
816
817
818
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
819
            clear_torch_cache()
820
821
            return batch_size

822
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
823
824
        return batch_size

baberabb's avatar
baberabb committed
825
826
827
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
828
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
829
830
831
832
833
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
834
        if add_special_tokens is None:
835
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
836
837
838
839
840
841
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
842

Lintang Sutawika's avatar
Lintang Sutawika committed
843
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
844

845
846
847
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
848

849
850
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
851
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
852
853
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
854
        padding_side: str = "left",
855
856
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
857
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
858
859
860
861
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
862
        add_special_tokens = {}
863
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
864
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
865
866
867

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
868
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
869
870
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
871
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
872
873
        )
        if left_truncate_len:
874
875
876
877
878
879
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
880
881
882
883
884
885
886
887
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
888
889
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
890
891
892

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
893
        :param inps: torch.Tensor
894
895
896
897
898
899
900
901
902
903
904
905
906
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
907
908
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
909
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
910
911
912
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
913
            else:
914
915
916
917
                assert self.AUTO_MODEL_CLASS in (
                    transformers.AutoModelForCausalLM,
                    transformers.AutoModelForVision2Seq,
                )
918
919
920
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
921
        # temperature = 0.0 if not set
922
923
924
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
925
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
926
        do_sample = generation_kwargs.get("do_sample", None)
927
928
929
930
931

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
932
933
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
934
935
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
936
            self.tokenizer, stop, context.shape[1], context.shape[0]
937
        )
938
        return self.model.generate(
939
            input_ids=context,
940
941
            max_length=max_length,
            stopping_criteria=stopping_criteria,
942
            pad_token_id=self.tokenizer.pad_token_id,
943
944
945
            use_cache=True,
            **generation_kwargs,
        )
946

Baber Abbasi's avatar
Baber Abbasi committed
947
948
949
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
950
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
951
952
953
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
954
955
956
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
957
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
958
959
960
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
961
            # only discard right-padding.
962
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
963
964
            logits = logits[:contlen]

965
966
        return logits

967
968
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
Baber's avatar
Baber committed
969
    ) -> list[LoglikelihoodOutput]:
Benjamin Fattori's avatar
Benjamin Fattori committed
970
971
972
973
974
975
976
977
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

978
979
980
981
982
983
984
985
986
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
987
        ):
988
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
989
990
991
992
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
993
                        prefix_token=self.prefix_token_id,
994
995
996
997
998
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
999
1000

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1001
            windows = [(None,) + x for x in rolling_token_windows]
1002

1003
1004
1005
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1006

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1027
            )
1028
            # Store results with their request indices
Baber's avatar
Baber committed
1029
            all_nlls.extend(zip(batch_indices, (x.loglikelihood for x in batch_nlls)))
1030

1031
1032
1033
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1034

1035
1036
1037
1038
1039
1040
1041
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
Baber's avatar
Baber committed
1042
1043
            request_total = sum(nll for nll in request_nlls)
            loglikelihoods.append(LoglikelihoodOutput(loglikelihood=request_total))
1044
1045
1046
1047
1048
1049
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1050

1051
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1066
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1067
1068
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1069

Ethan Smith's avatar
Ethan Smith committed
1070
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1071
1072
1073
1074
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
Baber's avatar
Baber committed
1075
    ) -> List[LoglikelihoodOutput]:
1076
1077
1078
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1079
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1080
            """Defines the key for the sorted method"""
1081
1082
1083
1084
1085
1086
1087
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1088
            toks = req[1] + req[2]
1089
1090
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1091
1092
1093
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1094
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1095
1096
1097
1098
1099
1100
1101
1102
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1103
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1104
1105
1106
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1107
1108
1109

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1110
1111
1112
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1113
1114
1115
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1116
1117
1118
1119
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1120
1121
1122
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1123
            else None
1124
1125
        )

Baber Abbasi's avatar
Baber Abbasi committed
1126
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1127
1128
1129
1130
1131
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1132
        for chunk in chunks:
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1152
                # how this all works (illustrated on a causal decoder-only setup):
1153
1154
1155
1156
1157
1158
1159
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1160
                if self.backend == "causal":
1161
1162
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1163
                        eval_logger.warning(
1164
1165
1166
1167
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1168
1169
1170
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1171
1172
                        device=self.device,
                    )
1173
                    (inplen,) = inp.shape
1174
                elif self.backend == "seq2seq":
1175
1176
1177
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1178
                        device=self.device,
1179
                    )
1180
                    (inplen,) = inp.shape
1181
1182
1183
1184

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1185
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
                        (continuation_enc)[-self.max_length :],
1187
1188
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1189
                        dtype=torch.long,
1190
1191
                        device=self.device,
                    )
1192
1193
                    (contlen,) = cont.shape

1194
1195
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1196
1197
1198
1199
1200
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1201

haileyschoelkopf's avatar
haileyschoelkopf committed
1202
1203
1204
1205
1206
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1207
1208
1209
1210

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1211

1212
1213
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1214
            if self.backend == "causal":
1215
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1216
1217
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1218
            elif self.backend == "seq2seq":
1219
                # TODO: left-pad encoder inps and mask?
1220
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1221
1222
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1223
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1224
1225
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1226
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1227
1228
1229
1230
1231
1232
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1233
1234

            multi_logits = F.log_softmax(
1235
1236
1237
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1238
            )  # [batch, padding_length (inp or cont), vocab]
1239

Baber Abbasi's avatar
Baber Abbasi committed
1240
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1241
1242
1243
1244
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1245
                # take only logits in the continuation
1246
                # (discard context toks if decoder-only ; discard right-padding)
1247
1248
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1249
                ctx_len = (
1250
                    inplen + (logits.shape[0] - padding_len_inp)
1251
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1252
1253
                    else None
                )
1254
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1255
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1256
1257
1258
1259

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1274
1275
1276
1277
1278
1279
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

Baber's avatar
Baber committed
1290
1291
1292
1293
1294
1295
1296
                    res.append(
                        LoglikelihoodOutput(
                            *answer,
                            ctx_tokens=ctx_tokens,
                            cont_tokens=cont_toks.tolist(),
                        )
                    )
Baber Abbasi's avatar
Baber Abbasi committed
1297

1298
1299
1300
1301
1302
1303
1304
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1305
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1306
1307

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1308

1309
1310
        return re_ord.get_original(res)

1311
    def generate_until(
Baber's avatar
Baber committed
1312
1313
        self, requests: List[Instance[GenerateInput]], disable_tqdm: bool = False
    ) -> List[GenerateOutput]:
Baber Abbasi's avatar
Baber Abbasi committed
1314
        res = []
1315

Baber Abbasi's avatar
Baber Abbasi committed
1316
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1317
            """Defines the key for the sorted method"""
1318
1319
1320
1321
1322
1323
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
1324
1325
            toks = self.tok_encode(req.prompt)
            return -len(toks), req.prompt
1326

1327
1328
        pbar = tqdm(
            total=len(requests),
1329
            disable=(disable_tqdm or (self.rank != 0)),
1330
1331
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1332
        adaptive_batch_size = None
1333
1334
1335
1336
1337
1338
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1339
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1352

Baber Abbasi's avatar
Baber Abbasi committed
1353
1354
1355
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1356
1357
1358
1359
1360
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
1361
            group_fn=lambda x: x.gen_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
1362
        )
Baber Abbasi's avatar
Baber Abbasi committed
1363
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1364
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1365
1366
1367
1368
1369
1370
1371
1372
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1373
1374
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1375
1376
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1377
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1378
                )
Baber Abbasi's avatar
Baber Abbasi committed
1379
1380
1381
1382
1383
1384
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1385
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1386
1387
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1388
1389
1390
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1391
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1403

Baber Abbasi's avatar
Baber Abbasi committed
1404
1405
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1406

Baber Abbasi's avatar
Baber Abbasi committed
1407
1408
1409
1410
1411
1412
1413
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1414

Baber Abbasi's avatar
Baber Abbasi committed
1415
1416
1417
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1418
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1419
                    cont_toks = cont_toks[context_enc.shape[1] :]
1420

Baber Abbasi's avatar
Baber Abbasi committed
1421
                s = self.tok_decode(cont_toks)
1422

Baber Abbasi's avatar
Baber Abbasi committed
1423
1424
1425
1426
1427
1428
1429
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

Baber's avatar
Baber committed
1430
                res.append(GenerateOutput(text=s))
Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
1433
1434
1435

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1436

1437
        pbar.close()
1438

Baber Abbasi's avatar
Baber Abbasi committed
1439
        return res
1440

Baber Abbasi's avatar
Baber Abbasi committed
1441
1442
1443
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
1444
1445
1446
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1447
1448
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1449
1450
1451
1452
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1453
1454
1455
1456
1457
1458
1459
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1460
1461
1462
1463
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1464
1465
1466
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1467

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1492
                eval_logger.debug(
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info