main.py 3.43 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
import argparse
import json
Leo Gao's avatar
Leo Gao committed
3
import logging
4
import os
Leo Gao's avatar
Leo Gao committed
5

gakada's avatar
gakada committed
6
from lm_eval import tasks, evaluator, utils
Jason Phang's avatar
lib  
Jason Phang committed
7

Leo Gao's avatar
Leo Gao committed
8
logging.getLogger("openai").setLevel(logging.WARNING)
Leo Gao's avatar
Leo Gao committed
9

Fabrizio Milo's avatar
Fabrizio Milo committed
10

Jason Phang's avatar
Jason Phang committed
11
12
def parse_args():
    parser = argparse.ArgumentParser()
Fabrizio Milo's avatar
Fabrizio Milo committed
13
14
    parser.add_argument("--model", required=True)
    parser.add_argument("--model_args", default="")
jonabur's avatar
jonabur committed
15
16
17
    parser.add_argument(
        "--tasks", default=None, choices=utils.MultiChoice(tasks.ALL_TASKS)
    )
Fabrizio Milo's avatar
Fabrizio Milo committed
18
19
    parser.add_argument("--provide_description", action="store_true")
    parser.add_argument("--num_fewshot", type=int, default=0)
20
    parser.add_argument("--batch_size", type=str, default=None)
jonabur's avatar
jonabur committed
21
22
23
24
25
26
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=None,
        help="Maximal batch size to try with --batch_size auto",
    )
Fabrizio Milo's avatar
Fabrizio Milo committed
27
28
    parser.add_argument("--device", type=str, default=None)
    parser.add_argument("--output_path", default=None)
jonabur's avatar
jonabur committed
29
30
31
32
33
34
35
    parser.add_argument(
        "--limit",
        type=float,
        default=None,
        help="Limit the number of examples per task. "
        "If <1, limit is a percentage of the total number of examples.",
    )
36
    parser.add_argument("--data_sampling", type=float, default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
39
40
    parser.add_argument("--no_cache", action="store_true")
    parser.add_argument("--decontamination_ngrams_path", default=None)
    parser.add_argument("--description_dict_path", default=None)
    parser.add_argument("--check_integrity", action="store_true")
41
42
    parser.add_argument("--write_out", action="store_true", default=False)
    parser.add_argument("--output_base_path", type=str, default=None)
43

Jason Phang's avatar
Jason Phang committed
44
45
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
46

47
def main():
Jason Phang's avatar
Jason Phang committed
48
    args = parse_args()
Fabrizio Milo's avatar
Fabrizio Milo committed
49

50
    assert not args.provide_description  # not implemented
Fabrizio Milo's avatar
Fabrizio Milo committed
51

Leo Gao's avatar
Leo Gao committed
52
    if args.limit:
Fabrizio Milo's avatar
Fabrizio Milo committed
53
54
55
        print(
            "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
        )
Leo Gao's avatar
Leo Gao committed
56

57
    if args.tasks is None:
researcher2's avatar
researcher2 committed
58
        task_names = tasks.ALL_TASKS
Jason Phang's avatar
Jason Phang committed
59
    else:
gakada's avatar
gakada committed
60
        task_names = utils.pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
Leo Gao's avatar
Leo Gao committed
61

62
63
    print(f"Selected Tasks: {task_names}")

64
65
    description_dict = {}
    if args.description_dict_path:
Fabrizio Milo's avatar
Fabrizio Milo committed
66
        with open(args.description_dict_path, "r") as f:
67
68
            description_dict = json.load(f)

69
    results = evaluator.simple_evaluate(
70
71
        model=args.model,
        model_args=args.model_args,
72
        tasks=task_names,
73
74
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
75
        max_batch_size=args.max_batch_size,
76
77
78
        device=args.device,
        no_cache=args.no_cache,
        limit=args.limit,
79
        description_dict=description_dict,
80
        decontamination_ngrams_path=args.decontamination_ngrams_path,
Fabrizio Milo's avatar
Fabrizio Milo committed
81
        check_integrity=args.check_integrity,
82
83
        write_out=args.write_out,
        output_base_path=args.output_base_path,
84
    )
85

Fabrizio Milo's avatar
Fabrizio Milo committed
86
    dumped = json.dumps(results, indent=2)
Jason Phang's avatar
Jason Phang committed
87
    print(dumped)
88

Jason Phang's avatar
Jason Phang committed
89
    if args.output_path:
jonabur's avatar
jonabur committed
90
91
        dirname = os.path.dirname(args.output_path)
        if dirname:
jonabur's avatar
jonabur committed
92
            os.makedirs(dirname, exist_ok=True)
Jason Phang's avatar
Jason Phang committed
93
94
        with open(args.output_path, "w") as f:
            f.write(dumped)
Jason Phang's avatar
Jason Phang committed
95

96
    batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
97
98
    print(
        f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
99
        f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
100
    )
101
    print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
102

103

Jason Phang's avatar
Jason Phang committed
104
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
105
    main()