"official/vision/modeling/heads/segmentation_heads.py" did not exist on "b6e0e8e52002bea9a8642766f766751826261c19"
main.py 4 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
import argparse
import json
Leo Gao's avatar
Leo Gao committed
3
import logging
4
import fnmatch
5
import os
Leo Gao's avatar
Leo Gao committed
6

7
from lm_eval import tasks, evaluator
Jason Phang's avatar
lib  
Jason Phang committed
8

Leo Gao's avatar
Leo Gao committed
9
logging.getLogger("openai").setLevel(logging.WARNING)
Leo Gao's avatar
Leo Gao committed
10

Fabrizio Milo's avatar
Fabrizio Milo committed
11

12
13
14
15
def _is_json_task(task_name):
    return task_name == "json" or task_name.startswith("json=")


16
17
18
19
20
21
22
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
23
24
25
            if len(fnmatch.filter(self.choices, value)) == 0 and not _is_json_task(
                value
            ):
26
27
28
29
30
31
32
33
                return False

        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice

Fabrizio Milo's avatar
Fabrizio Milo committed
34

Jason Phang's avatar
Jason Phang committed
35
36
def parse_args():
    parser = argparse.ArgumentParser()
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
39
40
41
    parser.add_argument("--model", required=True)
    parser.add_argument("--model_args", default="")
    parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS))
    parser.add_argument("--provide_description", action="store_true")
    parser.add_argument("--num_fewshot", type=int, default=0)
42
    parser.add_argument("--batch_size", type=str, default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
43
44
    parser.add_argument("--device", type=str, default=None)
    parser.add_argument("--output_path", default=None)
45
46
47
48
    parser.add_argument("--limit", type=float, default=None,
                        help="Limit the number of examples per task. "
                             "If <1, limit is a percentage of the total number of examples.")
    parser.add_argument("--data_sampling", type=float, default=None)
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
51
52
    parser.add_argument("--no_cache", action="store_true")
    parser.add_argument("--decontamination_ngrams_path", default=None)
    parser.add_argument("--description_dict_path", default=None)
    parser.add_argument("--check_integrity", action="store_true")
53
54
    parser.add_argument("--write_out", action="store_true", default=False)
    parser.add_argument("--output_base_path", type=str, default=None)
55

Jason Phang's avatar
Jason Phang committed
56
57
    return parser.parse_args()

Fabrizio Milo's avatar
Fabrizio Milo committed
58

59
60
61
62
63
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
64
65
66
        if _is_json_task(pattern):
            task_names.add(pattern)

67
68
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
69
    return sorted(list(task_names))
70

Fabrizio Milo's avatar
Fabrizio Milo committed
71

72
def main():
Jason Phang's avatar
Jason Phang committed
73
    args = parse_args()
Fabrizio Milo's avatar
Fabrizio Milo committed
74

75
    assert not args.provide_description  # not implemented
Fabrizio Milo's avatar
Fabrizio Milo committed
76

Leo Gao's avatar
Leo Gao committed
77
    if args.limit:
Fabrizio Milo's avatar
Fabrizio Milo committed
78
79
80
        print(
            "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
        )
Leo Gao's avatar
Leo Gao committed
81

82
    if args.tasks is None:
researcher2's avatar
researcher2 committed
83
        task_names = tasks.ALL_TASKS
Jason Phang's avatar
Jason Phang committed
84
    else:
85
        task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
Leo Gao's avatar
Leo Gao committed
86

87
88
    print(f"Selected Tasks: {task_names}")

89
90
    description_dict = {}
    if args.description_dict_path:
Fabrizio Milo's avatar
Fabrizio Milo committed
91
        with open(args.description_dict_path, "r") as f:
92
93
            description_dict = json.load(f)

94
    results = evaluator.simple_evaluate(
95
96
        model=args.model,
        model_args=args.model_args,
97
        tasks=task_names,
98
99
100
101
102
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
        device=args.device,
        no_cache=args.no_cache,
        limit=args.limit,
103
        description_dict=description_dict,
104
        decontamination_ngrams_path=args.decontamination_ngrams_path,
Fabrizio Milo's avatar
Fabrizio Milo committed
105
        check_integrity=args.check_integrity,
106
107
        write_out=args.write_out,
        output_base_path=args.output_base_path,
108
    )
109

Fabrizio Milo's avatar
Fabrizio Milo committed
110
    dumped = json.dumps(results, indent=2)
Jason Phang's avatar
Jason Phang committed
111
    print(dumped)
112

Jason Phang's avatar
Jason Phang committed
113
    if args.output_path:
114
        os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
Jason Phang's avatar
Jason Phang committed
115
116
        with open(args.output_path, "w") as f:
            f.write(dumped)
Jason Phang's avatar
Jason Phang committed
117

118
119
120
121
    print(
        f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
        f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
    )
122
    print(evaluator.make_table(results))
Jason Phang's avatar
lib  
Jason Phang committed
123

124

Jason Phang's avatar
Jason Phang committed
125
if __name__ == "__main__":
Jason Phang's avatar
lib  
Jason Phang committed
126
    main()