Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
98d75af0
Commit
98d75af0
authored
Feb 21, 2022
by
researcher2
Committed by
researcher2
Feb 21, 2022
Browse files
Changes for PR
Remove arguments from main.py. Add "decontamination" prefix to ngrams arguments.
parent
dcef7c8f
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
17 additions
and
37 deletions
+17
-37
lm_eval/evaluator.py
lm_eval/evaluator.py
+6
-6
main.py
main.py
+7
-27
scripts/clean_training_data/contamination.py
scripts/clean_training_data/contamination.py
+4
-4
No files found.
lm_eval/evaluator.py
View file @
98d75af0
...
@@ -14,7 +14,7 @@ def simple_evaluate(model, model_args=None, tasks=[],
...
@@ -14,7 +14,7 @@ def simple_evaluate(model, model_args=None, tasks=[],
num_fewshot
=
0
,
batch_size
=
None
,
device
=
None
,
num_fewshot
=
0
,
batch_size
=
None
,
device
=
None
,
no_cache
=
False
,
limit
=
None
,
bootstrap_iters
=
100000
,
no_cache
=
False
,
limit
=
None
,
bootstrap_iters
=
100000
,
description_dict
=
None
,
decontaminate
=
False
,
description_dict
=
None
,
decontaminate
=
False
,
ngrams_path
=
None
,
ngrams_n_size
=
None
):
decontaminate_
ngrams_path
=
None
,
decontaminate_
ngrams_n_size
=
None
):
"""Instantiate and evaluate a model on a list of tasks.
"""Instantiate and evaluate a model on a list of tasks.
:param model: Union[str, LM]
:param model: Union[str, LM]
...
@@ -69,8 +69,8 @@ def simple_evaluate(model, model_args=None, tasks=[],
...
@@ -69,8 +69,8 @@ def simple_evaluate(model, model_args=None, tasks=[],
limit
=
limit
,
limit
=
limit
,
description_dict
=
description_dict
,
description_dict
=
description_dict
,
decontaminate
=
decontaminate
,
decontaminate
=
decontaminate
,
ngrams_path
=
ngrams_path
,
decontaminate_ngrams_path
=
decontaminate_
ngrams_path
,
ngrams_n_size
=
ngrams_n_size
decontaminate_ngrams_n_size
=
decontaminate_
ngrams_n_size
)
)
# add info about the model and few shot config
# add info about the model and few shot config
...
@@ -92,7 +92,7 @@ decontaminate_suffix = "_decontaminate"
...
@@ -92,7 +92,7 @@ decontaminate_suffix = "_decontaminate"
@
positional_deprecated
@
positional_deprecated
def
evaluate
(
lm
,
task_dict
,
provide_description
=
None
,
num_fewshot
=
0
,
limit
=
None
,
bootstrap_iters
=
100000
,
description_dict
=
None
,
def
evaluate
(
lm
,
task_dict
,
provide_description
=
None
,
num_fewshot
=
0
,
limit
=
None
,
bootstrap_iters
=
100000
,
description_dict
=
None
,
decontaminate
=
False
,
ngrams_path
=
None
,
ngrams_n_size
=
None
):
decontaminate
=
False
,
decontaminate_
ngrams_path
=
None
,
decontaminate_
ngrams_n_size
=
None
):
"""Instantiate and evaluate a model on a list of tasks.
"""Instantiate and evaluate a model on a list of tasks.
:param lm: obj
:param lm: obj
...
@@ -121,7 +121,7 @@ def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None,
...
@@ -121,7 +121,7 @@ def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None,
print
(
"WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
)
print
(
"WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
)
if
decontaminate
:
if
decontaminate
:
assert
ngrams_path
and
ngrams_n_size
assert
decontaminate_
ngrams_path
and
decontaminate_
ngrams_n_size
task_dict_items
=
[
task_dict_items
=
[
(
name
,
task
)
(
name
,
task
)
...
@@ -193,7 +193,7 @@ def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None,
...
@@ -193,7 +193,7 @@ def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None,
# Compare all tasks/sets at once to ensure a single training set scan
# Compare all tasks/sets at once to ensure a single training set scan
if
decontaminate
:
if
decontaminate
:
print
(
"Finding train/test overlap, please wait..."
)
print
(
"Finding train/test overlap, please wait..."
)
overlaps
=
get_train_overlap
(
docs_for_decontamination
,
ngrams_path
,
ngrams_n_size
,
limit
)
overlaps
=
get_train_overlap
(
docs_for_decontamination
,
decontaminate_ngrams_path
,
decontaminate_
ngrams_n_size
,
limit
)
# all responses for each (task, doc)
# all responses for each (task, doc)
process_res_queue
=
collections
.
defaultdict
(
list
)
process_res_queue
=
collections
.
defaultdict
(
list
)
...
...
main.py
View file @
98d75af0
...
@@ -23,16 +23,11 @@ class MultiChoice:
...
@@ -23,16 +23,11 @@ class MultiChoice:
for
choice
in
self
.
choices
:
for
choice
in
self
.
choices
:
yield
choice
yield
choice
# Get task base classes for filtering
task_types
=
list
(
set
([
task
.
__bases__
[
0
].
__name__
for
task
in
tasks
.
TASK_REGISTRY
.
values
()]))
def
parse_args
():
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--model'
,
required
=
True
)
parser
.
add_argument
(
'--model'
,
required
=
True
)
parser
.
add_argument
(
'--model_args'
,
default
=
""
)
parser
.
add_argument
(
'--model_args'
,
default
=
""
)
parser
.
add_argument
(
'--tasks'
,
default
=
None
,
choices
=
MultiChoice
(
tasks
.
ALL_TASKS
))
parser
.
add_argument
(
'--tasks'
,
default
=
None
,
choices
=
MultiChoice
(
tasks
.
ALL_TASKS
))
parser
.
add_argument
(
'--task_type'
,
default
=
None
,
choices
=
MultiChoice
(
task_types
))
parser
.
add_argument
(
'--exclude_tasks'
,
default
=
None
,
choices
=
MultiChoice
(
tasks
.
ALL_TASKS
))
parser
.
add_argument
(
'--provide_description'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--provide_description'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--num_fewshot'
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
'--num_fewshot'
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
None
)
...
@@ -41,8 +36,8 @@ def parse_args():
...
@@ -41,8 +36,8 @@ def parse_args():
parser
.
add_argument
(
'--limit'
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
'--limit'
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
'--no_cache'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--no_cache'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--decontaminate'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--decontaminate'
,
action
=
"store_true"
)
parser
.
add_argument
(
'--ngrams_path'
,
default
=
None
)
parser
.
add_argument
(
'--
decontaminate_
ngrams_path'
,
default
=
None
)
parser
.
add_argument
(
'--ngrams_n_size'
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
'--
decontaminate_
ngrams_n_size'
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
'--description_dict_path'
,
default
=
None
)
parser
.
add_argument
(
'--description_dict_path'
,
default
=
None
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
...
@@ -50,10 +45,10 @@ def parse_args():
...
@@ -50,10 +45,10 @@ def parse_args():
def
ensure_correct_decontamination_params
(
args
):
def
ensure_correct_decontamination_params
(
args
):
valid
=
True
valid
=
True
if
args
.
decontaminate
:
if
args
.
decontaminate
:
if
not
args
.
ngrams_n_size
:
if
not
args
.
decontaminate_
ngrams_n_size
:
print
(
"Please specify n size of training set n-grams. (--ngrams_n_size)"
)
print
(
"Please specify n size of training set n-grams. (--ngrams_n_size)"
)
valid
=
False
valid
=
False
if
not
args
.
ngrams_path
:
if
not
args
.
decontaminate_
ngrams_path
:
print
(
"Please specify path containing training set n-grams. (--ngrams_path)"
)
print
(
"Please specify path containing training set n-grams. (--ngrams_path)"
)
valid
=
False
valid
=
False
...
@@ -78,26 +73,11 @@ def main():
...
@@ -78,26 +73,11 @@ def main():
if
args
.
limit
:
if
args
.
limit
:
print
(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
print
(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if
args
.
task_type
:
task_types
=
args
.
task_type
.
split
(
","
)
task_names
=
list
(
dict
(
filter
(
lambda
x
:
x
[
1
].
__bases__
[
0
].
__name__
in
task_types
,
tasks
.
TASK_REGISTRY
.
items
())
).
keys
())
if
args
.
tasks
is
None
:
if
args
.
tasks
is
None
:
if
args
.
task_type
is
None
:
task_names
=
tasks
.
ALL_TASKS
task_names
=
tasks
.
ALL_TASKS
else
:
else
:
task_names
=
pattern_match
(
args
.
tasks
.
split
(
","
),
tasks
.
ALL_TASKS
)
task_names
=
pattern_match
(
args
.
tasks
.
split
(
","
),
tasks
.
ALL_TASKS
)
if
args
.
exclude_tasks
:
exclude_tasks
=
pattern_match
(
args
.
exclude_tasks
.
split
(
","
),
task_names
)
task_names
=
list
(
filter
(
lambda
x
:
x
not
in
exclude_tasks
,
task_names
))
if
len
(
task_names
)
==
0
:
print
(
"You must have excluded the tasks you specified, exiting."
)
return
print
(
f
"Selected Tasks:
{
task_names
}
"
)
print
(
f
"Selected Tasks:
{
task_names
}
"
)
description_dict
=
{}
description_dict
=
{}
...
@@ -116,8 +96,8 @@ def main():
...
@@ -116,8 +96,8 @@ def main():
limit
=
args
.
limit
,
limit
=
args
.
limit
,
description_dict
=
description_dict
,
description_dict
=
description_dict
,
decontaminate
=
args
.
decontaminate
,
decontaminate
=
args
.
decontaminate
,
ngrams_path
=
args
.
ngrams_path
,
decontaminate_
ngrams_path
=
args
.
decontaminate_
ngrams_path
,
ngrams_n_size
=
args
.
ngrams_n_size
decontaminate_
ngrams_n_size
=
args
.
decontaminate_
ngrams_n_size
)
)
dumped
=
json
.
dumps
(
results
,
indent
=
2
)
dumped
=
json
.
dumps
(
results
,
indent
=
2
)
...
...
scripts/clean_training_data/contamination.py
View file @
98d75af0
...
@@ -107,18 +107,18 @@ def get_train_overlap(docs_by_task_set, ngrams_path, ngrams_n_size, limit):
...
@@ -107,18 +107,18 @@ def get_train_overlap(docs_by_task_set, ngrams_path, ngrams_n_size, limit):
non_matching_unique
=
0
non_matching_unique
=
0
current_ngram
=
""
current_ngram
=
""
for
line
in
reader
.
read_tqdm
():
for
line
in
reader
.
read_tqdm
():
# Scan training set ngrams file
total_ngrams
+=
1
total_ngrams
+=
1
[
ngram
,
document_id
]
=
line
.
rsplit
(
" "
,
1
)
[
ngram
,
document_id
]
=
line
.
rsplit
(
" "
,
1
)
if
ngram
!=
current_ngram
:
if
ngram
!=
current_ngram
:
# Only need to match the ngram once in training set
unique_ngrams
+=
1
unique_ngrams
+=
1
current_ngram
=
ngram
current_ngram
=
ngram
if
ngram
in
merged_lookup
:
if
ngram
in
merged_lookup
:
matched_ngrams
.
append
(
ngram
)
matched_ngrams
.
append
(
ngram
)
# For logging
matching_unique
+=
1
matching_unique
+=
1
for
task_name
,
task_set
,
doc_ids
in
merged_lookup
[
ngram
]:
for
task_name
,
task_set
,
doc_ids
in
merged_lookup
[
ngram
]:
task_doc_set
=
duplicates
[(
task_name
,
task_set
)]
task_doc_set
=
duplicates
[(
task_name
,
task_set
)]
for
doc_id
in
doc_ids
:
for
doc_id
in
doc_ids
:
# Record contamination across all relevant task/set combos
task_doc_set
.
add
(
doc_id
)
task_doc_set
.
add
(
doc_id
)
del
merged_lookup
[
ngram
]
# No point matching again
del
merged_lookup
[
ngram
]
# No point matching again
else
:
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment