base.py 36.2 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
cjlovering's avatar
cjlovering committed
3

4
import promptsource
thefazzer's avatar
thefazzer committed
5
import numpy as np
6
import random
Leo Gao's avatar
Leo Gao committed
7
import re
8
9
10
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
11
import datasets
12
from sqlitedict import SqliteDict
13
from tqdm import tqdm
14
import torch
Leo Gao's avatar
Leo Gao committed
15
import torch.nn.functional as F
&'s avatar
& committed
16

17
from lm_eval import metrics
18
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
19
from lm_eval import utils
20
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
21

Jason Phang's avatar
Jason Phang committed
22

Leo Gao's avatar
Leo Gao committed
23
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
24
25
26
    def __init__(self):
        self.cache_hook = CacheHook(None)

27
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
28
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
29
        """Compute log-likelihood of generating a continuation from a context.
cjlovering's avatar
cjlovering committed
30
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
31
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
32

Leo Gao's avatar
Leo Gao committed
33
34
35
        :param requests: list
            A list of pairs (context, continuation)
            context: str
cjlovering's avatar
cjlovering committed
36
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
37
                empty context string.
Leo Gao's avatar
Leo Gao committed
38
            continuation: str
cjlovering's avatar
cjlovering committed
39
40
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
41
42
43
44
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
45
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
46
            isgreedy:
Jason Phang's avatar
Jason Phang committed
47
48
49
50
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

51
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
52
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementaitons
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
90
91
92
        """
        pass

&'s avatar
& committed
93
    # TODO: Add an optional max length
94
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
95
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
96
97
98
99
100
101
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
102
            until: [str]
cjlovering's avatar
cjlovering committed
103
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
104
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
105
106
107
108
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
109
        """
Leo Gao's avatar
Leo Gao committed
110
111
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
112
    @classmethod
113
114
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
115
116
117
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
118

Leo Gao's avatar
Leo Gao committed
119
120
121
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
122

123
class BaseLM(LM):
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

149
    @abstractmethod
cjlovering's avatar
cjlovering committed
150
151
152
    def tok_encode(self, string: str):
        pass

153
    @abstractmethod
cjlovering's avatar
cjlovering committed
154
155
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
156

157
    @abstractmethod
cjlovering's avatar
cjlovering committed
158
159
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
160

161
162
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
163
        """
164
165
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
166

167
        returns: a torch tensor of shape [batch, sequence, vocab] with the
168
        logits returned from the model
169
170
        """
        pass
171

Leo Gao's avatar
Leo Gao committed
172
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
cjlovering's avatar
cjlovering committed
195
196
197
198
199
200
201
202
203
204
205
206
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
207
208
209

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

210
211
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
cjlovering's avatar
cjlovering committed
212
213
214
215
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

216
217
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
cjlovering's avatar
cjlovering committed
218

219
220
221
222
223
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

224
225
226
227
228
229
230
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
231
232
233
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
234
235
236
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
237
            return -len(toks), tuple(toks)
cjlovering's avatar
cjlovering committed
238

239
240
        # TODO: automatic (variable) batch size detection for vectorization
        reord = utils.Reorderer(requests, _collate)
cjlovering's avatar
cjlovering committed
241
242
243
        for chunk in utils.chunks(
            tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size
        ):
244
            inps = []
245
            cont_toks_list = []
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
262
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
263
                # gpt2    \               \
264
265
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
266
267
268

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
cjlovering's avatar
cjlovering committed
269
270
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
271
                ).to(self.device)
cjlovering's avatar
cjlovering committed
272
                (inplen,) = inp.shape
273
274
275
276

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
cjlovering's avatar
cjlovering committed
277
278
279
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
280

281
                # pad length from seq to padding_length
cjlovering's avatar
cjlovering committed
282
283
284
285
286
287
288
289
290
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
291

292
293
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
294
295
                inplens.append(inplen)

296
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
cjlovering's avatar
cjlovering committed
297
298
299
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
300

cjlovering's avatar
cjlovering committed
301
302
303
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
304

305
306
                # Slice to original seq length
                contlen = len(cont_toks)
cjlovering's avatar
cjlovering committed
307
308
309
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
310

311
                # Check if per-token argmax is exactly equal to continuation
312
                greedy_tokens = logits.argmax(dim=-1)
cjlovering's avatar
cjlovering committed
313
314
315
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
316
317
                max_equal = (greedy_tokens == cont_toks).all()

318
319
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
cjlovering's avatar
cjlovering committed
320
321
322
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
323

324
                # Answer: (log prob, is-exact-match)
325
326
327
328
329
330
331
332
333
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

        return reord.get_original(res)
cjlovering's avatar
cjlovering committed
334

335
    def greedy_until(self, requests):
cjlovering's avatar
cjlovering committed
336
        # TODO: implement fully general `until` that handles untils that are
337
        #       multiple tokens or that span multiple tokens correctly
338
339
340
341
342
343

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
344
            return len(toks), x[0]
cjlovering's avatar
cjlovering committed
345

346
347
348
        reord = utils.Reorderer(requests, _collate)

        for context, until in tqdm(reord.get_reordered()):
349
350
            if isinstance(until, str):
                until = [until]
351

jon-tow's avatar
jon-tow committed
352
            # TODO: Come back to for generation `eos`.
cjlovering's avatar
cjlovering committed
353
            primary_until = self.tok_encode(until[0])
cjlovering's avatar
cjlovering committed
354
355
356
357

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
358

cjlovering's avatar
cjlovering committed
359
            cont = self._model_generate(
cjlovering's avatar
cjlovering committed
360
361
362
                context_enc,
                context_enc.shape[1] + self.max_gen_toks,
                torch.tensor(primary_until),
cjlovering's avatar
cjlovering committed
363
            )
364

cjlovering's avatar
cjlovering committed
365
            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
366
367
368

            for term in until:
                s = s.split(term)[0]
cjlovering's avatar
cjlovering committed
369

370
371
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
cjlovering's avatar
cjlovering committed
372

373
            res.append(s)
cjlovering's avatar
cjlovering committed
374

375
        return reord.get_original(res)
Leo Gao's avatar
Leo Gao committed
376

Leo Gao's avatar
Leo Gao committed
377

378
class Task(abc.ABC):
&'s avatar
&amp; committed
379
380
381
382
383
384
385
386
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
387

Jon Tow's avatar
Jon Tow committed
388
389
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
390
391
392
393
394
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
419
        self._training_docs = None
420
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
421

Jon Tow's avatar
Jon Tow committed
422
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
cjlovering's avatar
cjlovering committed
423
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
424
425
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
446
447
448
449
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
450
451
            data_dir=data_dir,
            cache_dir=cache_dir,
cjlovering's avatar
cjlovering committed
452
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
453
        )
sdtblck's avatar
sdtblck committed
454

455
    @abstractmethod
456
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
457
        """Whether the task has a training set"""
458
        pass
459

460
    @abstractmethod
461
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
462
463
464
        """Whether the task has a validation set"""
        pass

465
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
466
467
    def has_test_docs(self):
        """Whether the task has a test set"""
468
469
        pass

Leo Gao's avatar
Leo Gao committed
470
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
471
472
473
474
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
475
        return []
476

Leo Gao's avatar
Leo Gao committed
477
    def validation_docs(self):
478
479
480
481
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
482
        return []
483

Leo Gao's avatar
Leo Gao committed
484
    def test_docs(self):
485
486
487
488
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
489
        return []
Leo Gao's avatar
Leo Gao committed
490

Jon Tow's avatar
Jon Tow committed
491
492
493
494
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
495
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
496
497
498
499
500
501

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

502
    def fewshot_examples(self, k, rnd):
503
504
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
505

Leo Gao's avatar
Leo Gao committed
506
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
507

508
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
509
510
511
    def doc_to_text(self, doc):
        pass

512
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
513
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
514
        pass
Leo Gao's avatar
Leo Gao committed
515

516
    @abstractmethod
517
    def construct_requests(self, doc, ctx):
cjlovering's avatar
cjlovering committed
518
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
519
520
        Requests which will be sent to the LM.

521
522
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
523
        :param ctx: str
cjlovering's avatar
cjlovering committed
524
            The context string, generated by fewshot_context. This includes the natural
525
            language description, as well as the few shot examples, and the question
cjlovering's avatar
cjlovering committed
526
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
527
        """
Leo Gao's avatar
Leo Gao committed
528
        pass
529

530
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
531
    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
532
533
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
534
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
535
536
537
538
539

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
540
        """
Leo Gao's avatar
Leo Gao committed
541
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
542

543
    @abstractmethod
544
545
    def aggregation(self):
        """
&'s avatar
&amp; committed
546
        :returns: {str: [metric_score] -> float}
cjlovering's avatar
cjlovering committed
547
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
548
            functions that aggregate a list of metric scores
549
550
551
        """
        pass

552
    @abstractmethod
553
554
555
    def higher_is_better(self):
        """
        :returns: {str: bool}
cjlovering's avatar
cjlovering committed
556
            A dictionary where keys are the names of submetrics and values are
557
558
559
560
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
561
    def fewshot_description(self):
562
        import warnings
cjlovering's avatar
cjlovering committed
563

564
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
565
            "`fewshot_description` will be removed in futures versions. Pass "
566
            "any custom descriptions to the `evaluate` function instead.",
cjlovering's avatar
cjlovering committed
567
568
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
569
570
        return ""

571
    @utils.positional_deprecated
cjlovering's avatar
cjlovering committed
572
573
574
575
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
576
577
578
579
580
581
582
583
584
585
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
586
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
587
588
589
590
591
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
cjlovering's avatar
cjlovering committed
592
593
594
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
595
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
596
            "The `provide_description` arg will be removed in future versions. To prepend "
597
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
598
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
599
        )
600
601
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
602
603
604
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
605

606
        description = description + "\n\n" if description else ""
607

608
609
        if num_fewshot == 0:
            labeled_examples = ""
610
        else:
611
612
613
614
615
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
616
                    self._fewshot_docs = list(
cjlovering's avatar
cjlovering committed
617
618
619
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
620
                    )
621

622
623
624
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
625

cjlovering's avatar
cjlovering committed
626
627
628
629
630
631
632
633
634
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
635

636
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
637
638
639
        return description + labeled_examples + example


cjlovering's avatar
cjlovering committed
640
class PromptSourceTask(Task):
641
642
643
644
645
646
647
648
649
650
    """These are the metrics from promptsource that we have
    added default behavior for. If you want to add default behavior for a new metric,
    update the functions below. If you want to use one of the following metrics,
    *and* add additional custom processing, override `process_results`, `higher_is_better`, and `aggregation`.

    WARNING: ROUGE is WIP.
    """

    CONFIGURED_PS_METRICS = set(["Accuracy", "BLEU", "ROUGE"])

cjlovering's avatar
cjlovering committed
651
652
653
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None, prompt=None):
        super().__init__(data_dir, cache_dir, download_mode)
        self.prompt = prompt
Jon Tow's avatar
Jon Tow committed
654

cjlovering's avatar
cjlovering committed
655
656
657
658
659
660
    def end_of_generation_sequence(self):
        """Denote where the generation should be split.

        For example, for coqa, this is '\nQ:' and for drop '.'.
        """
        return None
jon-tow's avatar
jon-tow committed
661

662
663
664
665
666
667
    def is_generation_task(self):
        return (
            "BLEU" in self.prompt.metadata.metrics
            or "ROUGE" in self.prompt.metadata.metrics
        )

cjlovering's avatar
cjlovering committed
668
669
    def invalid_doc_for_prompt(self, doc) -> bool:
        """Some prompts may not work for some documents."""
cjlovering's avatar
cjlovering committed
670
671
        if (
            # generate_paraphrase for mrpc
cjlovering's avatar
cjlovering committed
672
673
674
            # This generation prompt assumes a positive example. We filter out the negative examples.
            # https://github.com/bigscience-workshop/promptsource/blob/ba8c9eccbe82f2409208c655896f1dd131171ece/promptsource/templates/glue/mrpc/templates.yaml#L7
            # https://github.com/bigscience-workshop/promptsource/blob/ba8c9eccbe82f2409208c655896f1dd131171ece/promptsource/templates/glue/mrpc/templates.yaml#L88
cjlovering's avatar
cjlovering committed
675
676
677
678
679
680
681
682
683
            (
                self.prompt.id == "3b88d2c4-0aeb-4c6d-9ccc-653a388250a5"
                or self.prompt.id == "d830d7a5-abc0-4275-ac62-974e0088876f"
            )
            and doc["label"] == 0
        ):
            return True
        return False

cjlovering's avatar
cjlovering committed
684
685
    def doc_to_target(self, doc) -> str:
        """NOTE: In the future, this may return Union[str, List[str]]."""
jon-tow's avatar
jon-tow committed
686
        _, target = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
687
688
        return f" {target}"

cjlovering's avatar
cjlovering committed
689
    def doc_to_text(self, doc) -> str:
jon-tow's avatar
jon-tow committed
690
        text, _ = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        return text

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        _requests = []
705
        answer_choices_list = self.prompt.get_answer_choices_list(doc)
706
707
708
709

        # We take a present answer_choices list to mean that we should apply the supplied
        # metrics (hardcoded or accuracy atm) to the ranked choices. Otherwise, assume generation.
        # Above we do something similar, but rely on the metrics requested (BLEU, ROUGE indicating generation).
710
        if answer_choices_list:
711
712
713
            assert (
                not self.is_generation_task()
            ), f"We expect this to be a ranked choice task; double check please."
714
            for answer_choice in answer_choices_list:
cjlovering's avatar
cjlovering committed
715
716
717
718
                ll_answer_choice, _ = rf.loglikelihood(ctx, f" {answer_choice}")
                _requests.append(ll_answer_choice)
        else:
            # TODO(Albert): What is the stop symbol? Is it model specific?
cjlovering's avatar
cjlovering committed
719
            cont_request = rf.greedy_until(ctx, [self.end_of_generation_sequence()])
jon-tow's avatar
jon-tow committed
720
            _requests.append(cont_request)
cjlovering's avatar
cjlovering committed
721
722
723
724
725
726
727
728
729
730
731
732
733

        return _requests

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
734
735
736
        target = self.doc_to_target(doc).strip()
        answer_choices_list = self.prompt.get_answer_choices_list(doc)
        if answer_choices_list:
737
738
739
            assert (
                not self.is_generation_task()
            ), f"We expect this to be a ranked choice task; double check please."
740
            pred = answer_choices_list[np.argmax(results)]
741
            out = {}
742
743
744
745
746
747
748

            for metric in self.prompt.metadata.metrics:
                assert (
                    metric in self.CONFIGURED_PS_METRICS
                ), "Unexpected metric. Add it, or use a task-specific solution."
                if metric == "Accuracy":
                    out["acc"] = pred == target
749
750
            # TODO: Add metrics here.
            return out
cjlovering's avatar
cjlovering committed
751
        else:
752
753
754
            # NOTE: In the future, target may be a list, not a string.
            pred = results[0].strip()
            out = {}
cjlovering's avatar
cjlovering committed
755

756
757
758
759
760
761
762
763
764
765
            for metric in self.prompt.metadata.metrics:
                assert (
                    metric in self.CONFIGURED_PS_METRICS
                ), "Unexpected metric. Add it, or use a task-specific solution."
                if metric == "BLEU":
                    out["bleu"] = (target, pred)
                if metric == "ROUGE":
                    print("WARNING: Skipping Rouge.")

            return out
766

767
    def higher_is_better(self):
768
        out = {}
769
770
771
772
773
774
775
776
777
778
        for metric in self.prompt.metadata.metrics:
            assert (
                metric in self.CONFIGURED_PS_METRICS
            ), "Unexpected metric. Add it, or use a task-specific solution."
            if metric == "Accuracy":
                out["acc"] = True
            if metric == "BLEU":
                out["bleu"] = True
            if metric == "ROUGE":
                print("WARNING: Skipping Rouge.")
779
        return out
780
781

    def aggregation(self):
782
        out = {}
783
784
785
786
787
788
789
790
791
792
        for metric in self.prompt.metadata.metrics:
            assert (
                metric in self.CONFIGURED_PS_METRICS
            ), "Unexpected metric. Add it, or use a task-specific solution."
            if metric == "Accuracy":
                out["acc"] = mean
            if metric == "BLEU":
                out["bleu"] = metrics.bleu
            if metric == "ROUGE":
                print("WARNING: Skipping Rouge.")
793
        return out
cjlovering's avatar
cjlovering committed
794
795
796
797
798


class MultipleChoiceTask(Task):
    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
799

Leo Gao's avatar
Leo Gao committed
800
801
    def construct_requests(self, doc, ctx):
        lls = [
cjlovering's avatar
cjlovering committed
802
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
803
804
805
806
807
808
809
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

cjlovering's avatar
cjlovering committed
810
        acc = 1.0 if np.argmax(results) == gold else 0.0
811
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
cjlovering's avatar
cjlovering committed
812
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
813
814

        return {
Leo Gao's avatar
Leo Gao committed
815
816
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
817
        }
cjlovering's avatar
cjlovering committed
818

Leo Gao's avatar
Leo Gao committed
819
820
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
821
822
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
823
        }
cjlovering's avatar
cjlovering committed
824

Leo Gao's avatar
Leo Gao committed
825
826
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
827
828
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
829
830
831
        }


Jason Phang's avatar
Jason Phang committed
832
833
834
835
836
837
838
839
class PerplexityTask(Task, abc.ABC):
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

cjlovering's avatar
cjlovering committed
840
841
842
843
844
845
846
847
848
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
849
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
850
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
851
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
852
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
853
        )
854
855
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
856
857
858
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
859

Jason Phang's avatar
Jason Phang committed
860
861
862
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
863
864
865
866
867
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
868
869

    def doc_to_text(self, doc):
870
        return ""
Jason Phang's avatar
Jason Phang committed
871
872

    def doc_to_target(self, doc):
873
        return doc
Jason Phang's avatar
Jason Phang committed
874
875
876

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
877
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
878
879
880
        return req

    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
881
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
882
        words = self.count_words(doc)
883
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
884
        return {
Leo Gao's avatar
Leo Gao committed
885
            "word_perplexity": (loglikelihood, words),
886
            "byte_perplexity": (loglikelihood, bytes_),
887
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
888
889
890
891
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
892
893
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
894
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
895
896
        }

897
898
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
899
        return len(doc.encode("utf-8"))
900
901
902

    @classmethod
    def count_words(cls, doc):
cjlovering's avatar
cjlovering committed
903
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
904
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
905

Jason Phang's avatar
Jason Phang committed
906

Leo Gao's avatar
Leo Gao committed
907
908
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
cjlovering's avatar
cjlovering committed
909
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
910
911


Leo Gao's avatar
Leo Gao committed
912
913
class CacheHook:
    def __init__(self, cachinglm):
cjlovering's avatar
cjlovering committed
914
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
915
916
917
918
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
cjlovering's avatar
cjlovering committed
919

Leo Gao's avatar
Leo Gao committed
920
921
922
923
924
925
926
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
927
928
class CachingLM:
    def __init__(self, lm, cache_db):
929
930
931
932
933
934
935
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
936
937
        self.lm = lm
        self.cache_db = cache_db
938
939
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
940
941
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
942
943
944
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
945
946
947
948
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
cjlovering's avatar
cjlovering committed
949

Leo Gao's avatar
Leo Gao committed
950
951
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
952
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
953
954
955
956
957
958
959
960
961
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
cjlovering's avatar
cjlovering committed
962

963
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
964
965
966
967
968
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
969
970
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
971
972
973
974

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
975
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
976
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
977
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
978
979

            return res
cjlovering's avatar
cjlovering committed
980

Leo Gao's avatar
Leo Gao committed
981
        return fn
cjlovering's avatar
cjlovering committed
982

Leo Gao's avatar
Leo Gao committed
983
984
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
985

Jason Phang's avatar
Jason Phang committed
986

987
REQUEST_RETURN_LENGTHS = {
cjlovering's avatar
cjlovering committed
988
989
990
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
991
992
993
}


994
class Request:
Leo Gao's avatar
Leo Gao committed
995
996
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
cjlovering's avatar
cjlovering committed
997
998
999
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
1000

Leo Gao's avatar
Leo Gao committed
1001
        self.request_type = request_type
1002
1003
        self.args = args
        self.index = index
cjlovering's avatar
cjlovering committed
1004

1005
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
1006
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
1007
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
1008
1009
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
1010

1011
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
1012
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
1013
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
1014
        return Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
1015

Leo Gao's avatar
Leo Gao committed
1016
    def __eq__(self, other):
cjlovering's avatar
cjlovering committed
1017
1018
1019
1020
1021
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
1022

Leo Gao's avatar
Leo Gao committed
1023
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
1024
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
1025

Jason Phang's avatar
Jason Phang committed
1026

Leo Gao's avatar
Leo Gao committed
1027
1028
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
1029
1030
        def fn(*args):
            return Request(attr, args)
cjlovering's avatar
cjlovering committed
1031

Leo Gao's avatar
Leo Gao committed
1032
1033
1034
1035
        return fn


rf = RequestFactory()