base.py 32.1 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
cjlovering's avatar
cjlovering committed
3

jon-tow's avatar
jon-tow committed
4
import promptsource 
thefazzer's avatar
thefazzer committed
5
import numpy as np
6
import random
Leo Gao's avatar
Leo Gao committed
7
import re
8
9
10
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
11
import datasets
12
from sqlitedict import SqliteDict
13
from tqdm import tqdm
14
import torch
Leo Gao's avatar
Leo Gao committed
15
import torch.nn.functional as F
&'s avatar
& committed
16

17
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
18
from lm_eval import utils
19
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
20

Jason Phang's avatar
Jason Phang committed
21

Leo Gao's avatar
Leo Gao committed
22
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
23
24
25
    def __init__(self):
        self.cache_hook = CacheHook(None)

26
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
27
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
28
        """Compute log-likelihood of generating a continuation from a context.
cjlovering's avatar
cjlovering committed
29
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
30
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
31

Leo Gao's avatar
Leo Gao committed
32
33
34
        :param requests: list
            A list of pairs (context, continuation)
            context: str
cjlovering's avatar
cjlovering committed
35
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
36
                empty context string.
Leo Gao's avatar
Leo Gao committed
37
            continuation: str
cjlovering's avatar
cjlovering committed
38
39
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
40
41
42
43
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
44
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
45
            isgreedy:
Jason Phang's avatar
Jason Phang committed
46
47
48
49
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

50
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
51
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementaitons
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
89
90
91
        """
        pass

&'s avatar
& committed
92
    # TODO: Add an optional max length
93
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
94
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
95
96
97
98
99
100
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
101
            until: [str]
cjlovering's avatar
cjlovering committed
102
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
103
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
104
105
106
107
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
108
        """
Leo Gao's avatar
Leo Gao committed
109
110
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
111
    @classmethod
112
113
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
114
115
116
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
117

Leo Gao's avatar
Leo Gao committed
118
119
120
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
121

122
class BaseLM(LM):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

148
    @abstractmethod
cjlovering's avatar
cjlovering committed
149
150
151
    def tok_encode(self, string: str):
        pass

152
    @abstractmethod
cjlovering's avatar
cjlovering committed
153
154
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
155

156
    @abstractmethod
cjlovering's avatar
cjlovering committed
157
158
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
159

160
161
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
162
        """
163
164
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
165

166
        returns: a torch tensor of shape [batch, sequence, vocab] with the
167
        logits returned from the model
168
169
        """
        pass
170

Leo Gao's avatar
Leo Gao committed
171
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
cjlovering's avatar
cjlovering committed
194
195
196
197
198
199
200
201
202
203
204
205
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
206
207
208

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

209
210
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
cjlovering's avatar
cjlovering committed
211
212
213
214
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

215
216
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
cjlovering's avatar
cjlovering committed
217

218
219
220
221
222
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

223
224
225
226
227
228
229
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
230
231
232
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
233
234
235
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
236
            return -len(toks), tuple(toks)
cjlovering's avatar
cjlovering committed
237

238
239
        # TODO: automatic (variable) batch size detection for vectorization
        reord = utils.Reorderer(requests, _collate)
cjlovering's avatar
cjlovering committed
240
241
242
        for chunk in utils.chunks(
            tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size
        ):
243
            inps = []
244
            cont_toks_list = []
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
261
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
262
                # gpt2    \               \
263
264
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
265
266
267

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
cjlovering's avatar
cjlovering committed
268
269
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
270
                ).to(self.device)
cjlovering's avatar
cjlovering committed
271
                (inplen,) = inp.shape
272
273
274
275

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
cjlovering's avatar
cjlovering committed
276
277
278
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
279

280
                # pad length from seq to padding_length
cjlovering's avatar
cjlovering committed
281
282
283
284
285
286
287
288
289
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
290

291
292
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
293
294
                inplens.append(inplen)

295
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
cjlovering's avatar
cjlovering committed
296
297
298
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
299

cjlovering's avatar
cjlovering committed
300
301
302
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
303

304
305
                # Slice to original seq length
                contlen = len(cont_toks)
cjlovering's avatar
cjlovering committed
306
307
308
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
309

310
                # Check if per-token argmax is exactly equal to continuation
311
                greedy_tokens = logits.argmax(dim=-1)
cjlovering's avatar
cjlovering committed
312
313
314
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
315
316
                max_equal = (greedy_tokens == cont_toks).all()

317
318
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
cjlovering's avatar
cjlovering committed
319
320
321
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
322

323
                # Answer: (log prob, is-exact-match)
324
325
326
327
328
329
330
331
332
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

        return reord.get_original(res)
cjlovering's avatar
cjlovering committed
333

334
    def greedy_until(self, requests):
cjlovering's avatar
cjlovering committed
335
        # TODO: implement fully general `until` that handles untils that are
336
        #       multiple tokens or that span multiple tokens correctly
337
338
339
340
341
342

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
343
            return len(toks), x[0]
cjlovering's avatar
cjlovering committed
344

345
346
347
        reord = utils.Reorderer(requests, _collate)

        for context, until in tqdm(reord.get_reordered()):
348
349
            if isinstance(until, str):
                until = [until]
350

cjlovering's avatar
cjlovering committed
351
352
353
354
355
            (primary_until,) = self.tok_encode(until[0])

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
356

cjlovering's avatar
cjlovering committed
357
358
359
            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )
360

cjlovering's avatar
cjlovering committed
361
            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
362
363
364

            for term in until:
                s = s.split(term)[0]
cjlovering's avatar
cjlovering committed
365

366
367
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
cjlovering's avatar
cjlovering committed
368

369
            res.append(s)
cjlovering's avatar
cjlovering committed
370

371
        return reord.get_original(res)
Leo Gao's avatar
Leo Gao committed
372

Leo Gao's avatar
Leo Gao committed
373

374
class Task(abc.ABC):
&'s avatar
&amp; committed
375
376
377
378
379
380
381
382
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
383

Jon Tow's avatar
Jon Tow committed
384
385
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
386
387
388
389
390
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
415
        self._training_docs = None
416
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
417

Jon Tow's avatar
Jon Tow committed
418
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
cjlovering's avatar
cjlovering committed
419
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
420
421
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
442
443
444
445
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
446
447
            data_dir=data_dir,
            cache_dir=cache_dir,
cjlovering's avatar
cjlovering committed
448
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
449
        )
sdtblck's avatar
sdtblck committed
450

451
    @abstractmethod
452
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
453
        """Whether the task has a training set"""
454
        pass
455

456
    @abstractmethod
457
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
458
459
460
        """Whether the task has a validation set"""
        pass

461
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
462
463
    def has_test_docs(self):
        """Whether the task has a test set"""
464
465
        pass

Leo Gao's avatar
Leo Gao committed
466
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
467
468
469
470
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
471
        return []
472

Leo Gao's avatar
Leo Gao committed
473
    def validation_docs(self):
474
475
476
477
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
478
        return []
479

Leo Gao's avatar
Leo Gao committed
480
    def test_docs(self):
481
482
483
484
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
485
        return []
Leo Gao's avatar
Leo Gao committed
486

Jon Tow's avatar
Jon Tow committed
487
488
489
490
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
491
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
492
493
494
495
496
497

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

498
    def fewshot_examples(self, k, rnd):
499
500
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
501

Leo Gao's avatar
Leo Gao committed
502
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
503

504
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
505
506
507
    def doc_to_text(self, doc):
        pass

508
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
509
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
510
        pass
Leo Gao's avatar
Leo Gao committed
511

512
    @abstractmethod
513
    def construct_requests(self, doc, ctx):
cjlovering's avatar
cjlovering committed
514
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
515
516
        Requests which will be sent to the LM.

517
518
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
519
        :param ctx: str
cjlovering's avatar
cjlovering committed
520
            The context string, generated by fewshot_context. This includes the natural
521
            language description, as well as the few shot examples, and the question
cjlovering's avatar
cjlovering committed
522
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
523
        """
Leo Gao's avatar
Leo Gao committed
524
        pass
525

526
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
527
    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
528
529
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
530
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
531
532
533
534
535

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
536
        """
Leo Gao's avatar
Leo Gao committed
537
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
538

539
    @abstractmethod
540
541
    def aggregation(self):
        """
&'s avatar
&amp; committed
542
        :returns: {str: [metric_score] -> float}
cjlovering's avatar
cjlovering committed
543
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
544
            functions that aggregate a list of metric scores
545
546
547
        """
        pass

548
    @abstractmethod
549
550
551
    def higher_is_better(self):
        """
        :returns: {str: bool}
cjlovering's avatar
cjlovering committed
552
            A dictionary where keys are the names of submetrics and values are
553
554
555
556
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
557
    def fewshot_description(self):
558
        import warnings
cjlovering's avatar
cjlovering committed
559

560
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
561
            "`fewshot_description` will be removed in futures versions. Pass "
562
            "any custom descriptions to the `evaluate` function instead.",
cjlovering's avatar
cjlovering committed
563
564
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
565
566
        return ""

567
    @utils.positional_deprecated
cjlovering's avatar
cjlovering committed
568
569
570
571
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
572
573
574
575
576
577
578
579
580
581
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
582
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
583
584
585
586
587
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
cjlovering's avatar
cjlovering committed
588
589
590
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
591
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
592
            "The `provide_description` arg will be removed in future versions. To prepend "
593
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
594
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
595
        )
596
597
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
598
599
600
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
601

602
        description = description + "\n\n" if description else ""
603

604
605
        if num_fewshot == 0:
            labeled_examples = ""
606
        else:
607
608
609
610
611
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
612
                    self._fewshot_docs = list(
cjlovering's avatar
cjlovering committed
613
614
615
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
616
                    )
617

618
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
619

620
621
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
622

cjlovering's avatar
cjlovering committed
623
624
625
626
627
628
629
630
631
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
632

633
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
634
635
636
        return description + labeled_examples + example


cjlovering's avatar
cjlovering committed
637
638
639
640
class PromptSourceTask(Task):
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None, prompt=None):
        super().__init__(data_dir, cache_dir, download_mode)
        self.prompt = prompt
Jon Tow's avatar
Jon Tow committed
641

Leo Gao's avatar
Leo Gao committed
642
    def doc_to_target(self, doc):
jon-tow's avatar
jon-tow committed
643
        _, target = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
644
645
646
        return f" {target}"

    def doc_to_text(self, doc):
jon-tow's avatar
jon-tow committed
647
648
        print(doc)
        text, _ = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        return text

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        _requests = []

        if self.prompt.metadata.choices_in_prompt:
jon-tow's avatar
jon-tow committed
665
            for answer_choice in self.prompt.get_fixed_answer_choices_list():
cjlovering's avatar
cjlovering committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                ll_answer_choice, _ = rf.loglikelihood(ctx, f" {answer_choice}")
                _requests.append(ll_answer_choice)
        else:
            # TODO(Albert): What is the stop symbol? Is it model specific?
            ll_greedy, _ = rf.greedy_until(ctx, ["\nQ:"])
            _requests.append(ll_greedy)

        return _requests

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        raise NotImplementedError(
            "Implement process results using the `prompt.metadata.metrics`. See below."
        )
        if self.prompt.metadata.choices_in_prompt:
            for result, answer_choice in zip(
                prompt.get_fixed_answer_choices_list(), results
            ):
                pass
        else:
            continuation = results

        # Map metric name to HF metric.
        # TODO(Albert): What is Other?
        metric_names = prompt.metadata.metrics


class MultipleChoiceTask(Task):
    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
704

Leo Gao's avatar
Leo Gao committed
705
706
    def construct_requests(self, doc, ctx):
        lls = [
cjlovering's avatar
cjlovering committed
707
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
708
709
710
711
712
713
714
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

cjlovering's avatar
cjlovering committed
715
        acc = 1.0 if np.argmax(results) == gold else 0.0
716
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
cjlovering's avatar
cjlovering committed
717
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
718
719

        return {
Leo Gao's avatar
Leo Gao committed
720
721
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
722
        }
cjlovering's avatar
cjlovering committed
723

Leo Gao's avatar
Leo Gao committed
724
725
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
726
727
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
728
        }
cjlovering's avatar
cjlovering committed
729

Leo Gao's avatar
Leo Gao committed
730
731
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
732
733
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
734
735
736
        }


Jason Phang's avatar
Jason Phang committed
737
738
739
740
741
742
743
744
class PerplexityTask(Task, abc.ABC):
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

cjlovering's avatar
cjlovering committed
745
746
747
748
749
750
751
752
753
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
754
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
755
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
756
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
757
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
758
        )
759
760
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
761
762
763
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
764

Jason Phang's avatar
Jason Phang committed
765
766
767
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
768
769
770
771
772
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
773
774

    def doc_to_text(self, doc):
775
        return ""
Jason Phang's avatar
Jason Phang committed
776
777

    def doc_to_target(self, doc):
778
        return doc
Jason Phang's avatar
Jason Phang committed
779
780
781

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
782
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
783
784
785
        return req

    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
786
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
787
        words = self.count_words(doc)
788
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
789
        return {
Leo Gao's avatar
Leo Gao committed
790
            "word_perplexity": (loglikelihood, words),
791
            "byte_perplexity": (loglikelihood, bytes_),
792
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
793
794
795
796
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
797
798
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
799
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
800
801
        }

802
803
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
804
        return len(doc.encode("utf-8"))
805
806
807

    @classmethod
    def count_words(cls, doc):
cjlovering's avatar
cjlovering committed
808
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
809
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
810

Jason Phang's avatar
Jason Phang committed
811

Leo Gao's avatar
Leo Gao committed
812
813
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
cjlovering's avatar
cjlovering committed
814
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
815
816


Leo Gao's avatar
Leo Gao committed
817
818
class CacheHook:
    def __init__(self, cachinglm):
cjlovering's avatar
cjlovering committed
819
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
820
821
822
823
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
cjlovering's avatar
cjlovering committed
824

Leo Gao's avatar
Leo Gao committed
825
826
827
828
829
830
831
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
832
833
class CachingLM:
    def __init__(self, lm, cache_db):
834
835
836
837
838
839
840
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
841
842
        self.lm = lm
        self.cache_db = cache_db
843
844
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
845
846
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
847
848
849
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
850
851
852
853
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
cjlovering's avatar
cjlovering committed
854

Leo Gao's avatar
Leo Gao committed
855
856
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
857
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
858
859
860
861
862
863
864
865
866
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
cjlovering's avatar
cjlovering committed
867

868
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
869
870
871
872
873
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
874
875
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
876
877
878
879

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
880
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
881
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
882
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
883
884

            return res
cjlovering's avatar
cjlovering committed
885

Leo Gao's avatar
Leo Gao committed
886
        return fn
cjlovering's avatar
cjlovering committed
887

Leo Gao's avatar
Leo Gao committed
888
889
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
890

Jason Phang's avatar
Jason Phang committed
891

892
REQUEST_RETURN_LENGTHS = {
cjlovering's avatar
cjlovering committed
893
894
895
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
896
897
898
}


899
class Request:
Leo Gao's avatar
Leo Gao committed
900
901
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
cjlovering's avatar
cjlovering committed
902
903
904
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
905

Leo Gao's avatar
Leo Gao committed
906
        self.request_type = request_type
907
908
        self.args = args
        self.index = index
cjlovering's avatar
cjlovering committed
909

910
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
911
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
912
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
913
914
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
915

916
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
917
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
918
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
919
        return Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
920

Leo Gao's avatar
Leo Gao committed
921
    def __eq__(self, other):
cjlovering's avatar
cjlovering committed
922
923
924
925
926
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
927

Leo Gao's avatar
Leo Gao committed
928
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
929
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
930

Jason Phang's avatar
Jason Phang committed
931

Leo Gao's avatar
Leo Gao committed
932
933
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
934
935
        def fn(*args):
            return Request(attr, args)
cjlovering's avatar
cjlovering committed
936

Leo Gao's avatar
Leo Gao committed
937
938
939
940
        return fn


rf = RequestFactory()