base.py 32.4 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
cjlovering's avatar
cjlovering committed
3

jon-tow's avatar
jon-tow committed
4
import promptsource 
thefazzer's avatar
thefazzer committed
5
import numpy as np
6
import random
Leo Gao's avatar
Leo Gao committed
7
import re
8
9
10
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
11
import datasets
12
from sqlitedict import SqliteDict
13
from tqdm import tqdm
14
import torch
Leo Gao's avatar
Leo Gao committed
15
import torch.nn.functional as F
&'s avatar
& committed
16

17
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
18
from lm_eval import utils
19
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
20

Jason Phang's avatar
Jason Phang committed
21

Leo Gao's avatar
Leo Gao committed
22
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
23
24
25
    def __init__(self):
        self.cache_hook = CacheHook(None)

26
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
27
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
28
        """Compute log-likelihood of generating a continuation from a context.
cjlovering's avatar
cjlovering committed
29
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
30
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
31

Leo Gao's avatar
Leo Gao committed
32
33
34
        :param requests: list
            A list of pairs (context, continuation)
            context: str
cjlovering's avatar
cjlovering committed
35
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
36
                empty context string.
Leo Gao's avatar
Leo Gao committed
37
            continuation: str
cjlovering's avatar
cjlovering committed
38
39
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
40
41
42
43
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
44
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
45
            isgreedy:
Jason Phang's avatar
Jason Phang committed
46
47
48
49
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

50
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
51
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementaitons
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
89
90
91
        """
        pass

&'s avatar
& committed
92
    # TODO: Add an optional max length
93
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
94
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
95
96
97
98
99
100
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
101
            until: [str]
cjlovering's avatar
cjlovering committed
102
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
103
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
104
105
106
107
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
108
        """
Leo Gao's avatar
Leo Gao committed
109
110
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
111
    @classmethod
112
113
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
114
115
116
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
117

Leo Gao's avatar
Leo Gao committed
118
119
120
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
121

122
class BaseLM(LM):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

148
    @abstractmethod
cjlovering's avatar
cjlovering committed
149
150
151
    def tok_encode(self, string: str):
        pass

152
    @abstractmethod
cjlovering's avatar
cjlovering committed
153
154
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
155

156
    @abstractmethod
cjlovering's avatar
cjlovering committed
157
158
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
159

160
161
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
162
        """
163
164
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
165

166
        returns: a torch tensor of shape [batch, sequence, vocab] with the
167
        logits returned from the model
168
169
        """
        pass
170

Leo Gao's avatar
Leo Gao committed
171
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
cjlovering's avatar
cjlovering committed
194
195
196
197
198
199
200
201
202
203
204
205
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
206
207
208

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

209
210
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
cjlovering's avatar
cjlovering committed
211
212
213
214
            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

215
216
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
cjlovering's avatar
cjlovering committed
217

218
219
220
221
222
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

223
224
225
226
227
228
229
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
230
231
232
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
233
234
235
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
236
            return -len(toks), tuple(toks)
cjlovering's avatar
cjlovering committed
237

238
239
        # TODO: automatic (variable) batch size detection for vectorization
        reord = utils.Reorderer(requests, _collate)
cjlovering's avatar
cjlovering committed
240
241
242
        for chunk in utils.chunks(
            tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size
        ):
243
            inps = []
244
            cont_toks_list = []
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
261
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
262
                # gpt2    \               \
263
264
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
265
266
267

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
cjlovering's avatar
cjlovering committed
268
269
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
270
                ).to(self.device)
cjlovering's avatar
cjlovering committed
271
                (inplen,) = inp.shape
272
273
274
275

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
cjlovering's avatar
cjlovering committed
276
277
278
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
279

280
                # pad length from seq to padding_length
cjlovering's avatar
cjlovering committed
281
282
283
284
285
286
287
288
289
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
290

291
292
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
293
294
                inplens.append(inplen)

295
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
cjlovering's avatar
cjlovering committed
296
297
298
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
299

cjlovering's avatar
cjlovering committed
300
301
302
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
303

304
305
                # Slice to original seq length
                contlen = len(cont_toks)
cjlovering's avatar
cjlovering committed
306
307
308
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
309

310
                # Check if per-token argmax is exactly equal to continuation
311
                greedy_tokens = logits.argmax(dim=-1)
cjlovering's avatar
cjlovering committed
312
313
314
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
315
316
                max_equal = (greedy_tokens == cont_toks).all()

317
318
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
cjlovering's avatar
cjlovering committed
319
320
321
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
322

323
                # Answer: (log prob, is-exact-match)
324
325
326
327
328
329
330
331
332
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

        return reord.get_original(res)
cjlovering's avatar
cjlovering committed
333

334
    def greedy_until(self, requests):
cjlovering's avatar
cjlovering committed
335
        # TODO: implement fully general `until` that handles untils that are
336
        #       multiple tokens or that span multiple tokens correctly
337
338
339
340
341
342

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
343
            return len(toks), x[0]
cjlovering's avatar
cjlovering committed
344

345
346
347
        reord = utils.Reorderer(requests, _collate)

        for context, until in tqdm(reord.get_reordered()):
348
349
            if isinstance(until, str):
                until = [until]
350

jon-tow's avatar
jon-tow committed
351
352
            # TODO: Come back to for generation `eos`.
            primary_until = self.tok_encode(until[0])[0]
cjlovering's avatar
cjlovering committed
353
354
355
356

            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
357

cjlovering's avatar
cjlovering committed
358
359
360
            cont = self._model_generate(
                context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until
            )
361

cjlovering's avatar
cjlovering committed
362
            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
363
364
365

            for term in until:
                s = s.split(term)[0]
cjlovering's avatar
cjlovering committed
366

367
368
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
cjlovering's avatar
cjlovering committed
369

370
            res.append(s)
cjlovering's avatar
cjlovering committed
371

372
        return reord.get_original(res)
Leo Gao's avatar
Leo Gao committed
373

Leo Gao's avatar
Leo Gao committed
374

375
class Task(abc.ABC):
&'s avatar
&amp; committed
376
377
378
379
380
381
382
383
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
384

Jon Tow's avatar
Jon Tow committed
385
386
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
387
388
389
390
391
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
416
        self._training_docs = None
417
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
418

Jon Tow's avatar
Jon Tow committed
419
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
cjlovering's avatar
cjlovering committed
420
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
421
422
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
443
444
445
446
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
447
448
            data_dir=data_dir,
            cache_dir=cache_dir,
cjlovering's avatar
cjlovering committed
449
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
450
        )
sdtblck's avatar
sdtblck committed
451

452
    @abstractmethod
453
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
454
        """Whether the task has a training set"""
455
        pass
456

457
    @abstractmethod
458
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
459
460
461
        """Whether the task has a validation set"""
        pass

462
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
463
464
    def has_test_docs(self):
        """Whether the task has a test set"""
465
466
        pass

Leo Gao's avatar
Leo Gao committed
467
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
468
469
470
471
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
472
        return []
473

Leo Gao's avatar
Leo Gao committed
474
    def validation_docs(self):
475
476
477
478
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
479
        return []
480

Leo Gao's avatar
Leo Gao committed
481
    def test_docs(self):
482
483
484
485
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
486
        return []
Leo Gao's avatar
Leo Gao committed
487

Jon Tow's avatar
Jon Tow committed
488
489
490
491
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
492
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
493
494
495
496
497
498

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

499
    def fewshot_examples(self, k, rnd):
500
501
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
502

Leo Gao's avatar
Leo Gao committed
503
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
504

505
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
506
507
508
    def doc_to_text(self, doc):
        pass

509
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
510
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
511
        pass
Leo Gao's avatar
Leo Gao committed
512

513
    @abstractmethod
514
    def construct_requests(self, doc, ctx):
cjlovering's avatar
cjlovering committed
515
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
516
517
        Requests which will be sent to the LM.

518
519
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
520
        :param ctx: str
cjlovering's avatar
cjlovering committed
521
            The context string, generated by fewshot_context. This includes the natural
522
            language description, as well as the few shot examples, and the question
cjlovering's avatar
cjlovering committed
523
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
524
        """
Leo Gao's avatar
Leo Gao committed
525
        pass
526

527
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
528
    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
529
530
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
531
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
532
533
534
535
536

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
537
        """
Leo Gao's avatar
Leo Gao committed
538
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
539

540
    @abstractmethod
541
542
    def aggregation(self):
        """
&'s avatar
&amp; committed
543
        :returns: {str: [metric_score] -> float}
cjlovering's avatar
cjlovering committed
544
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
545
            functions that aggregate a list of metric scores
546
547
548
        """
        pass

549
    @abstractmethod
550
551
552
    def higher_is_better(self):
        """
        :returns: {str: bool}
cjlovering's avatar
cjlovering committed
553
            A dictionary where keys are the names of submetrics and values are
554
555
556
557
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
558
    def fewshot_description(self):
559
        import warnings
cjlovering's avatar
cjlovering committed
560

561
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
562
            "`fewshot_description` will be removed in futures versions. Pass "
563
            "any custom descriptions to the `evaluate` function instead.",
cjlovering's avatar
cjlovering committed
564
565
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
566
567
        return ""

568
    @utils.positional_deprecated
cjlovering's avatar
cjlovering committed
569
570
571
572
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
573
574
575
576
577
578
579
580
581
582
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
583
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
584
585
586
587
588
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
cjlovering's avatar
cjlovering committed
589
590
591
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
592
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
593
            "The `provide_description` arg will be removed in future versions. To prepend "
594
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
595
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
596
        )
597
598
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
599
600
601
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
602

603
        description = description + "\n\n" if description else ""
604

605
606
        if num_fewshot == 0:
            labeled_examples = ""
607
        else:
608
609
610
611
612
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
613
                    self._fewshot_docs = list(
cjlovering's avatar
cjlovering committed
614
615
616
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
617
                    )
618

619
620
621
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
622

cjlovering's avatar
cjlovering committed
623
624
625
626
627
628
629
630
631
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
632

633
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
634
635
636
        return description + labeled_examples + example


cjlovering's avatar
cjlovering committed
637
638
639
640
class PromptSourceTask(Task):
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None, prompt=None):
        super().__init__(data_dir, cache_dir, download_mode)
        self.prompt = prompt
Jon Tow's avatar
Jon Tow committed
641

jon-tow's avatar
jon-tow committed
642
643
644
    def eos_token(self):
        raise NotImplementedError()

Leo Gao's avatar
Leo Gao committed
645
    def doc_to_target(self, doc):
jon-tow's avatar
jon-tow committed
646
        _, target = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
647
648
649
        return f" {target}"

    def doc_to_text(self, doc):
jon-tow's avatar
jon-tow committed
650
        text, _ = self.prompt.apply(doc)
cjlovering's avatar
cjlovering committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        return text

    def construct_requests(self, doc, ctx):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        """
        _requests = []
665
666
667
        answer_choices_list = self.prompt.get_answer_choices_list(doc)
        if answer_choices_list:
            for answer_choice in answer_choices_list:
cjlovering's avatar
cjlovering committed
668
669
670
671
                ll_answer_choice, _ = rf.loglikelihood(ctx, f" {answer_choice}")
                _requests.append(ll_answer_choice)
        else:
            # TODO(Albert): What is the stop symbol? Is it model specific?
jon-tow's avatar
jon-tow committed
672
673
            cont_request = rf.greedy_until(ctx, [self.eos_token()])
            _requests.append(cont_request)
cjlovering's avatar
cjlovering committed
674
675
676
677
678
679
680
681
682
683
684
685
686

        return _requests

    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
687
688
689
690
691
692
693
694
695
696
        # raise NotImplementedError(
        #     "Implement process results using the `prompt.metadata.metrics`. See below."
        # )
        target = self.doc_to_target(doc).strip()
        answer_choices_list = self.prompt.get_answer_choices_list(doc)
        if answer_choices_list:
            pred = answer_choices_list[np.argmax(results)]
            return {
                "acc": pred == target
            }
cjlovering's avatar
cjlovering committed
697
698
        else:
            continuation = results
jon-tow's avatar
jon-tow committed
699
            raise NotImplementedError()
cjlovering's avatar
cjlovering committed
700
701
702

        # Map metric name to HF metric.
        # TODO(Albert): What is Other?
703
        #metric_names = prompt.metadata.metrics
cjlovering's avatar
cjlovering committed
704
705
706
707
708


class MultipleChoiceTask(Task):
    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
709

Leo Gao's avatar
Leo Gao committed
710
711
    def construct_requests(self, doc, ctx):
        lls = [
cjlovering's avatar
cjlovering committed
712
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
713
714
715
716
717
718
719
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

cjlovering's avatar
cjlovering committed
720
        acc = 1.0 if np.argmax(results) == gold else 0.0
721
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
cjlovering's avatar
cjlovering committed
722
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
723
724

        return {
Leo Gao's avatar
Leo Gao committed
725
726
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
727
        }
cjlovering's avatar
cjlovering committed
728

Leo Gao's avatar
Leo Gao committed
729
730
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
731
732
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
733
        }
cjlovering's avatar
cjlovering committed
734

Leo Gao's avatar
Leo Gao committed
735
736
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
737
738
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
739
740
741
        }


Jason Phang's avatar
Jason Phang committed
742
743
744
745
746
747
748
749
class PerplexityTask(Task, abc.ABC):
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

cjlovering's avatar
cjlovering committed
750
751
752
753
754
755
756
757
758
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
759
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
760
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
761
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
762
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
763
        )
764
765
        if provide_description is not None:
            # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
766
767
768
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
769

Jason Phang's avatar
Jason Phang committed
770
771
772
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
773
774
775
776
777
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
778
779

    def doc_to_text(self, doc):
780
        return ""
Jason Phang's avatar
Jason Phang committed
781
782

    def doc_to_target(self, doc):
783
        return doc
Jason Phang's avatar
Jason Phang committed
784
785
786

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
787
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
788
789
790
        return req

    def process_results(self, doc, results):
cjlovering's avatar
cjlovering committed
791
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
792
        words = self.count_words(doc)
793
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
794
        return {
Leo Gao's avatar
Leo Gao committed
795
            "word_perplexity": (loglikelihood, words),
796
            "byte_perplexity": (loglikelihood, bytes_),
797
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
798
799
800
801
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
802
803
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
804
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
805
806
        }

807
808
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
809
        return len(doc.encode("utf-8"))
810
811
812

    @classmethod
    def count_words(cls, doc):
cjlovering's avatar
cjlovering committed
813
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
814
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
815

Jason Phang's avatar
Jason Phang committed
816

Leo Gao's avatar
Leo Gao committed
817
818
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
cjlovering's avatar
cjlovering committed
819
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
820
821


Leo Gao's avatar
Leo Gao committed
822
823
class CacheHook:
    def __init__(self, cachinglm):
cjlovering's avatar
cjlovering committed
824
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
825
826
827
828
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
cjlovering's avatar
cjlovering committed
829

Leo Gao's avatar
Leo Gao committed
830
831
832
833
834
835
836
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
837
838
class CachingLM:
    def __init__(self, lm, cache_db):
839
840
841
842
843
844
845
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
846
847
        self.lm = lm
        self.cache_db = cache_db
848
849
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
850
851
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
852
853
854
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
855
856
857
858
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
cjlovering's avatar
cjlovering committed
859

Leo Gao's avatar
Leo Gao committed
860
861
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
862
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
863
864
865
866
867
868
869
870
871
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
cjlovering's avatar
cjlovering committed
872

873
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
874
875
876
877
878
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
879
880
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
881
882
883
884

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
885
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
886
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
887
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
888
889

            return res
cjlovering's avatar
cjlovering committed
890

Leo Gao's avatar
Leo Gao committed
891
        return fn
cjlovering's avatar
cjlovering committed
892

Leo Gao's avatar
Leo Gao committed
893
894
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
895

Jason Phang's avatar
Jason Phang committed
896

897
REQUEST_RETURN_LENGTHS = {
cjlovering's avatar
cjlovering committed
898
899
900
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
901
902
903
}


904
class Request:
Leo Gao's avatar
Leo Gao committed
905
906
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
cjlovering's avatar
cjlovering committed
907
908
909
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
910

Leo Gao's avatar
Leo Gao committed
911
        self.request_type = request_type
912
913
        self.args = args
        self.index = index
cjlovering's avatar
cjlovering committed
914

915
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
916
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
917
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
918
919
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
920

921
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
922
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
cjlovering's avatar
cjlovering committed
923
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
924
        return Request(self.request_type, self.args, i)
cjlovering's avatar
cjlovering committed
925

Leo Gao's avatar
Leo Gao committed
926
    def __eq__(self, other):
cjlovering's avatar
cjlovering committed
927
928
929
930
931
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
932

Leo Gao's avatar
Leo Gao committed
933
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
934
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
935

Jason Phang's avatar
Jason Phang committed
936

Leo Gao's avatar
Leo Gao committed
937
938
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
939
940
        def fn(*args):
            return Request(attr, args)
cjlovering's avatar
cjlovering committed
941

Leo Gao's avatar
Leo Gao committed
942
943
944
945
        return fn


rf = RequestFactory()