evaluator.py 10.9 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Stephen Hogg's avatar
Stephen Hogg committed
3
import pathlib
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
cjlovering's avatar
cjlovering committed
9
import promptsource
10
import numpy as np
cjlovering's avatar
cjlovering committed
11
12

from promptsource.templates import DatasetTemplates
Stephen Hogg's avatar
Stephen Hogg committed
13
from lm_eval.utils import positional_deprecated, run_task_tests
14

15

16
@positional_deprecated
cjlovering's avatar
cjlovering committed
17
18
19
20
21
22
23
24
25
26
27
28
29
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
):
30
    """Instantiate and evaluate a model on a list of tasks.
31

32
33
34
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
cjlovering's avatar
cjlovering committed
35
        String arguments for each model class, see LM.create_from_arg_string.
36
37
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
38
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
39
40
41
42
43
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
44
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
45
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
46
        Whether or not to cache
47
48
49
50
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
51
    :param description_dict: dict[str, str]
cjlovering's avatar
cjlovering committed
52
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
53
54
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
55
    :return
56
        Dictionary of results
57
    """
58
59
60
    random.seed(1234)
    np.random.seed(1234)

61
62
63
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
cjlovering's avatar
cjlovering committed
64
65
66
67
68
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
            model_args, {"batch_size": batch_size, "device": device}
        )
69
70
71
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
72
73

    if not no_cache:
74
        lm = lm_eval.base.CachingLM(
cjlovering's avatar
cjlovering committed
75
76
77
78
79
80
            lm,
            "lm_cache/"
            + model
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
81
        )
cjlovering's avatar
cjlovering committed
82
83

    task_dict = lm_eval.tasks.get_task_dict_promptsource(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
84

Stephen Hogg's avatar
Stephen Hogg committed
85
    if check_integrity:
86
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
87

88
89
90
91
92
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
cjlovering's avatar
cjlovering committed
93
        description_dict=description_dict,
94
    )
95
96
97
98
99
100
101
102
103
104

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
105
        "bootstrap_iters": bootstrap_iters,
cjlovering's avatar
cjlovering committed
106
        "description_dict": description_dict,
107
108
109
    }

    return results
Leo Gao's avatar
Leo Gao committed
110
111


112
@positional_deprecated
cjlovering's avatar
cjlovering committed
113
114
115
116
117
118
119
120
121
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
):
122
123
124
125
126
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
127
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
128
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
129
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
130
131
132
133
134
135
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
136
    :param description_dict: dict[str, str]
cjlovering's avatar
cjlovering committed
137
        Dictionary of custom task descriptions of the form: `task_name: description`
138
139
140
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
141
142
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

143
144
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
145
146
    if provide_description is not None:
        # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
147
148
149
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
150
151
152
153

    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
cjlovering's avatar
cjlovering committed
154
        if (task.has_validation_docs() or task.has_test_docs())
155
    ]
Leo Gao's avatar
Leo Gao committed
156
157

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
158
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
159
160
161
162

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

163
164
165
166
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
167
168
169
170

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

171
    # get lists of each type of request
jon-tow's avatar
jon-tow committed
172
    for task_prompt_name, task in task_dict_items:
173
174
175
176
        if task.is_generation_task():
            print(f"WARNING: Skipping generation prompt {task.prompt.name}.")
            continue

jon-tow's avatar
jon-tow committed
177
        versions[task_prompt_name] = task.VERSION
178
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
179
180
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
181
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
182
183
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
184
185
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
186

Leo Gao's avatar
Leo Gao committed
187
188
189
190
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
191
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
192

cjlovering's avatar
cjlovering committed
193
        description = (
jon-tow's avatar
jon-tow committed
194
195
            description_dict[task_prompt_name]
            if description_dict and task_prompt_name in description_dict
cjlovering's avatar
cjlovering committed
196
197
            else ""
        )
198

Leo Gao's avatar
Leo Gao committed
199
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
jon-tow's avatar
jon-tow committed
200
            docs[(task_prompt_name, doc_id)] = doc
Leo Gao's avatar
Leo Gao committed
201
            ctx = task.fewshot_context(
cjlovering's avatar
cjlovering committed
202
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
203
204
            )
            reqs = task.construct_requests(doc, ctx)
205
206
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
207
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
208
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
209
210
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
211
212
213
                requests_origin[req.request_type].append(
                    (i, task_prompt_name, doc, doc_id)
                )
Leo Gao's avatar
Leo Gao committed
214
215
216
217
218
219

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
220
221
222
223
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
224

Leo Gao's avatar
Leo Gao committed
225
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
226
        resps = getattr(lm, reqtype)([req.args for req in reqs])
cjlovering's avatar
cjlovering committed
227
228
229
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
230

231
232
233
        for resp, (i, task_prompt_name, doc, doc_id) in zip(
            resps, requests_origin[reqtype]
        ):
jon-tow's avatar
jon-tow committed
234
            process_res_queue[(task_prompt_name, doc_id)].append((i, resp))
cjlovering's avatar
cjlovering committed
235

Leo Gao's avatar
Leo Gao committed
236
237
238
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
jon-tow's avatar
jon-tow committed
239
    for (task_prompt_name, doc_id), requests in process_res_queue.items():
Leo Gao's avatar
Leo Gao committed
240
241
242
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

jon-tow's avatar
jon-tow committed
243
244
        task = task_dict[task_prompt_name]
        doc = docs[(task_prompt_name, doc_id)]
Leo Gao's avatar
Leo Gao committed
245
246
247

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
jon-tow's avatar
jon-tow committed
248
249
            vals[(task_prompt_name, metric)].append(value)

Leo Gao's avatar
Leo Gao committed
250
    # aggregate results
jon-tow's avatar
jon-tow committed
251
252
253
254
    for (task_prompt_name, metric), items in vals.items():
        task_name, prompt_name = task_prompt_name.split("+")
        results[task_prompt_name]["task_name"] = task_name
        results[task_prompt_name]["prompt_name"] = prompt_name
255
        task = task_dict[task_prompt_name]
jon-tow's avatar
jon-tow committed
256
        results[task_prompt_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
257

258
259
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
260
261
        stderr = lm_eval.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
cjlovering's avatar
cjlovering committed
262
263
264
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
265
        )
Leo Gao's avatar
Leo Gao committed
266
        if stderr is not None:
jon-tow's avatar
jon-tow committed
267
            results[task_prompt_name][metric + "_stderr"] = stderr(items)
cjlovering's avatar
cjlovering committed
268
269

    return {"results": dict(results), "versions": dict(versions)}
270
271
272


def make_table(result_dict):
273
    """Generate table of results."""
274
275
276
277
278
279
280
281
282
283
284
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []
    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
285
286
            if m.endswith("_stderr"):
                continue
287
288
            if "_name" in m:
                continue
289
290
            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
cjlovering's avatar
cjlovering committed
291
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
292
            else:
cjlovering's avatar
cjlovering committed
293
                values.append([k, version, m, "%.4f" % v, "", ""])
294
295
296
297
298
299
300
301
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

302
    return md_writer.dumps()