evaluator.py 10.7 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Stephen Hogg's avatar
Stephen Hogg committed
3
import pathlib
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
cjlovering's avatar
cjlovering committed
9
import promptsource
10
import numpy as np
cjlovering's avatar
cjlovering committed
11
12

from promptsource.templates import DatasetTemplates
Stephen Hogg's avatar
Stephen Hogg committed
13
from lm_eval.utils import positional_deprecated, run_task_tests
14

15

16
@positional_deprecated
cjlovering's avatar
cjlovering committed
17
18
19
20
21
22
23
24
25
26
27
28
29
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
):
30
    """Instantiate and evaluate a model on a list of tasks.
31

32
33
34
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
cjlovering's avatar
cjlovering committed
35
        String arguments for each model class, see LM.create_from_arg_string.
36
37
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
38
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
39
40
41
42
43
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
44
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
45
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
46
        Whether or not to cache
47
48
49
50
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
51
    :param description_dict: dict[str, str]
cjlovering's avatar
cjlovering committed
52
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
53
54
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
55
    :return
56
        Dictionary of results
57
    """
58
59
60
    random.seed(1234)
    np.random.seed(1234)

61
62
63
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
cjlovering's avatar
cjlovering committed
64
65
66
67
68
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
            model_args, {"batch_size": batch_size, "device": device}
        )
69
70
71
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
72
73

    if not no_cache:
74
        lm = lm_eval.base.CachingLM(
cjlovering's avatar
cjlovering committed
75
76
77
78
79
80
            lm,
            "lm_cache/"
            + model
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
81
        )
cjlovering's avatar
cjlovering committed
82
83

    task_dict = lm_eval.tasks.get_task_dict_promptsource(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
84

Stephen Hogg's avatar
Stephen Hogg committed
85
    if check_integrity:
86
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
87

88
89
90
91
92
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
cjlovering's avatar
cjlovering committed
93
        description_dict=description_dict,
94
    )
95
96
97
98
99
100
101
102
103
104

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
105
        "bootstrap_iters": bootstrap_iters,
cjlovering's avatar
cjlovering committed
106
        "description_dict": description_dict,
107
108
109
    }

    return results
Leo Gao's avatar
Leo Gao committed
110
111


112
@positional_deprecated
cjlovering's avatar
cjlovering committed
113
114
115
116
117
118
119
120
121
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
):
122
123
124
125
126
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
127
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
128
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
129
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
130
131
132
133
134
135
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
136
    :param description_dict: dict[str, str]
cjlovering's avatar
cjlovering committed
137
        Dictionary of custom task descriptions of the form: `task_name: description`
138
139
140
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
141
142
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

143
144
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
145
146
    if provide_description is not None:
        # nudge people to not specify it at all
cjlovering's avatar
cjlovering committed
147
148
149
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
150
151
152
153

    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
cjlovering's avatar
cjlovering committed
154
        if (task.has_validation_docs() or task.has_test_docs())
155
    ]
Leo Gao's avatar
Leo Gao committed
156
157

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
158
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
159
160
161
162

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

163
164
165
166
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
167
168
169
170

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

171
    # get lists of each type of request
jon-tow's avatar
jon-tow committed
172
173
174
175
    for task_prompt_name, task in task_dict_items:
        print(f"TASK PROMPT NAME: {task_prompt_name}")
    
        versions[task_prompt_name] = task.VERSION
176
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
177
178
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
179
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
180
181
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
182
183
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
184

Leo Gao's avatar
Leo Gao committed
185
186
187
188
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
189
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
190

cjlovering's avatar
cjlovering committed
191
        description = (
jon-tow's avatar
jon-tow committed
192
193
            description_dict[task_prompt_name]
            if description_dict and task_prompt_name in description_dict
cjlovering's avatar
cjlovering committed
194
195
            else ""
        )
196

Leo Gao's avatar
Leo Gao committed
197
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
jon-tow's avatar
jon-tow committed
198
            docs[(task_prompt_name, doc_id)] = doc
Leo Gao's avatar
Leo Gao committed
199
            ctx = task.fewshot_context(
cjlovering's avatar
cjlovering committed
200
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
201
202
            )
            reqs = task.construct_requests(doc, ctx)
203
204
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
205
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
206
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
207
208
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
jon-tow's avatar
jon-tow committed
209
                requests_origin[req.request_type].append((i, task_prompt_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
210
211
212
213
214
215

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
216
217
218
219
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
220

Leo Gao's avatar
Leo Gao committed
221
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
222
        resps = getattr(lm, reqtype)([req.args for req in reqs])
cjlovering's avatar
cjlovering committed
223
224
225
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
226

jon-tow's avatar
jon-tow committed
227
228
        for resp, (i, task_prompt_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_prompt_name, doc_id)].append((i, resp))
cjlovering's avatar
cjlovering committed
229

Leo Gao's avatar
Leo Gao committed
230
231
232
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
jon-tow's avatar
jon-tow committed
233
    for (task_prompt_name, doc_id), requests in process_res_queue.items():
Leo Gao's avatar
Leo Gao committed
234
235
236
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

jon-tow's avatar
jon-tow committed
237
238
        task = task_dict[task_prompt_name]
        doc = docs[(task_prompt_name, doc_id)]
Leo Gao's avatar
Leo Gao committed
239
240
241

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
jon-tow's avatar
jon-tow committed
242
243
            vals[(task_prompt_name, metric)].append(value)

cjlovering's avatar
cjlovering committed
244
245


Leo Gao's avatar
Leo Gao committed
246
    # aggregate results
jon-tow's avatar
jon-tow committed
247
248
249
250
    for (task_prompt_name, metric), items in vals.items():
        task_name, prompt_name = task_prompt_name.split("+")
        results[task_prompt_name]["task_name"] = task_name
        results[task_prompt_name]["prompt_name"] = prompt_name
Leo Gao's avatar
Leo Gao committed
251
        task = task_dict[task_name]
cjlovering's avatar
cjlovering committed
252

jon-tow's avatar
jon-tow committed
253
        results[task_prompt_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
254

255
256
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
257
258
        stderr = lm_eval.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
cjlovering's avatar
cjlovering committed
259
260
261
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
262
        )
Leo Gao's avatar
Leo Gao committed
263
        if stderr is not None:
jon-tow's avatar
jon-tow committed
264
            results[task_prompt_name][metric + "_stderr"] = stderr(items)
cjlovering's avatar
cjlovering committed
265
266

    return {"results": dict(results), "versions": dict(versions)}
267
268
269


def make_table(result_dict):
270
    """Generate table of results."""
271
272
273
274
275
276
277
278
279
280
281
282
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
283
284
            if m.endswith("_stderr"):
                continue
285
286
287

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
cjlovering's avatar
cjlovering committed
288
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
289
            else:
cjlovering's avatar
cjlovering committed
290
                values.append([k, version, m, "%.4f" % v, "", ""])
291
292
293
294
295
296
297
298
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

299
    return md_writer.dumps()