huggingface.py 64 KB
Newer Older
1
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
2
import logging
3
import os
Jeevan's avatar
Jeevan committed
4
from datetime import timedelta
5
from pathlib import Path
6
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple, Union
7

8
import jinja2
9
import torch
10
import torch.nn.functional as F
11
import transformers
Jeevan's avatar
Jeevan committed
12
13
14
15
16
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
17
from accelerate.utils import get_max_memory
18
from huggingface_hub import HfApi
19
20
from packaging import version
from tqdm import tqdm
21
22
23
24
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
25
26

from lm_eval import utils
baberabb's avatar
baberabb committed
27
from lm_eval.api.instance import Instance
28
from lm_eval.api.model import TemplateLM
29
from lm_eval.api.registry import register_model
30
31
32
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
33
    configure_pad_token,
34
    get_dtype,
35
    handle_stop_sequences,
36
    pad_and_concat,
37
    postprocess_generated_text,
38
39
    stop_sequences_criteria,
)
40

41

42
43
44
if TYPE_CHECKING:
    from transformers.quantizers import AutoQuantizationConfig

Lintang Sutawika's avatar
Lintang Sutawika committed
45
eval_logger = logging.getLogger(__name__)
46

lintangsutawika's avatar
lintangsutawika committed
47

48
@register_model("hf-auto", "hf", "huggingface")
49
class HFLM(TemplateLM):
50
51
52
53
54
55
56
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

57
    AUTO_MODEL_CLASS = None
58
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
59

60
61
    def __init__(
        self,
62
        pretrained: Union[str, transformers.PreTrainedModel],
63
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
64
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
65
        revision: Optional[str] = "main",
66
        subfolder: str = "",
67
68
69
70
71
72
73
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
74
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
75
        logits_cache: bool = True,
76
77
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
78
        dtype: Optional[Union[str, torch.dtype]] = "auto",
79
        softmax_dtype: Optional[Union[str, torch.dtype]] = None,
80
        mixed_precision_dtype: Optional[Union[str, torch.dtype]] = None,
Benjamin Fattori's avatar
Benjamin Fattori committed
81
82
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
83
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
84
        use_fast_tokenizer: Optional[bool] = True,
85
        add_bos_token: Optional[bool] = False,
86
        prefix_token_id: Optional[int] = None,
87
        # arguments used for splitting a model across GPUs naively.
88
89
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
90
91
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
92
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
93
        # PEFT, delta weights and quantization options
94
        peft: Optional[str] = None,
95
        delta: Optional[str] = None,
96
        autogptq: Optional[Union[bool, str]] = False,
97
        gptqmodel: Optional[bool] = False,
98
        gguf_file: Optional[str] = None,
99
100
101
        # end token for thinking, either the string or int token id.
        # splits to get response after this token (if provided).
        think_end_token: Union[str, int, None] = None,
102
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
103
    ) -> None:
104
        super().__init__()
105
106
107
108
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
109
            )
Baber Abbasi's avatar
Baber Abbasi committed
110
111
112
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
113
114
115
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
116
            gpus = 0
117

118
        else:
119
120
121
122
123
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
124
125
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
126
127
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
128

129
130
131
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
132
            # using one process with no model parallelism
133
134
135
136
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
137
                    + [f"cuda:{i}" for i in range(gpus)]
138
                    + ["mps", "mps:0"]
139
                    + [f"npu:{i}" for i in range(gpus)]
140
                )
141
                if device and device in device_list:
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
158
            else:  # Parallelism managed by accelerate
159
160
161
162
163
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
164
165
166
167
168
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
169

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
170
            revision = str(revision)  # cast to string if not already one
171

172
            self._get_config(
173
174
175
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
176
                gguf_file=gguf_file,
177
                subfolder=subfolder,
178
179
            )

180
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
181
182
183
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
184

185
186
187
188
189
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
190
            subfolder=subfolder,
191
192
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
193
            gguf_file=gguf_file,
194
            add_bos_token=add_bos_token,
195
196
        )

197
198
199
200
201
202
203
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

204
205
206
207
208
209
210
211
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
212
                gpus=gpus,
213
214
215
216
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
217
                delta=delta,
218
                autogptq=autogptq,
219
                gptqmodel=gptqmodel,
220
                gguf_file=gguf_file,
221
                quantization_config=quantization_config,
222
                subfolder=subfolder,
223
                **kwargs,
224
225
            )

226
        # access self._model through self.model property outside this method
227
228
229
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
230

231
232
233
234
235
        self.think_end_token = (
            int(think_end_token)
            if (isinstance(think_end_token, str) and think_end_token.isdigit())
            else think_end_token
        )
lintangsutawika's avatar
lintangsutawika committed
236
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
237
        self.logits_cache = logits_cache
238
        self.vocab_size = self.tokenizer.vocab_size
239
        # select (or create) a pad token to use
240
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
241

242
        self.add_bos_token = add_bos_token
243
        if "gemma" in getattr(self.config, "model_type", ""):
244
            self.add_bos_token = True
245
            eval_logger.info(
246
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
247
248
            )

249
        self._max_length = max_length
250
251
252
253
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
254
255
256
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
257
258
259
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
260
261
262
263
264
        self.mixed_precision_dtype = (
            get_dtype(mixed_precision_dtype)
            if mixed_precision_dtype is not None
            else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
265
266
267
268
269
270
271

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
272

273
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
274
275
276
277
278
279
280
281
282
283
284
285
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
286
287
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
288
289
290
291
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
292
                        )
Nathan Habib's avatar
Nathan Habib committed
293
                    elif gpus > accelerator.num_processes:
294
295
296
297
298
299
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
300
301
302
303
304
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

305
                    self._device = torch.device(f"{accelerator.device}")
306
                    self.accelerator = accelerator
307

308
309
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
310
311
312
313
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
314
315
316
317
318
319
320
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
321

322
        self.custom_prefix_token_id = prefix_token_id
323
324
325
326
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
327

Nathan Habib's avatar
Nathan Habib committed
328
329
    def _get_accelerate_args(
        self,
330
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
377
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
378
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
379
                else:
Nathan Habib's avatar
Nathan Habib committed
380
381
382
383
384
385
386
387
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
388
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
389
            eval_logger.info(
390
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

416
417
418
419
420
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

421
422
423
424
425
426
427
428
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

429
430
431
432
433
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

434
435
436
437
438
439
440
441
442
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

443
444
    @property
    def max_length(self):
445
446
447
448
449
450
451
452
453
454
455
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
456

457
    @property
Ethan Smith's avatar
Ethan Smith committed
458
    def max_gen_toks(self) -> int:
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
477
478
479
480
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

481
482
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
483
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
484
        backend: Literal["default", "causal", "seq2seq"] = "default",
485
486
487
488
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
489
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
490
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
491
492
493

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
494
        """
495

496
497
498
499
500
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
501
                self.backend = backend
502
            elif backend == "seq2seq":
503
                self.backend = backend
504
            eval_logger.info(
505
                f"Overrode HF model backend type, and using type '{self.backend}'"
506
507
508
509
510
511
512
513
514
515
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
516
                self.backend = "seq2seq"
517
                eval_logger.debug(f"Using model type '{self.backend}'")
518
519
520
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
521
                self.backend = "causal"
522
                eval_logger.debug(f"Using model type '{self.backend}'")
523
524
525
526
527
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
528
                        "Setting backend to causal"
529
530
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
531
532
533
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
534
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
535
                )
536

537
538
539
540
541
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
542
543
544
545
546
547

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
548
        gguf_file: Optional[str] = None,
549
        subfolder: str = "",
550
    ) -> None:
551
        """Return the model config for HuggingFace models"""
552
553
554
555
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
556
            gguf_file=gguf_file,
557
            subfolder=subfolder,
558
559
560
561
562
563
564
565
566
567
568
569
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
570
        gpus: Optional[int] = None,
571
572
573
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
574
        # PEFT, delta weights and quantization options
575
        peft: Optional[str] = None,
576
        delta: Optional[str] = None,
577
        autogptq: Optional[Union[bool, str]] = False,
578
        gptqmodel: Optional[bool] = False,
579
        gguf_file: Optional[str] = None,
580
        quantization_config: Optional["AutoQuantizationConfig"] = None,
581
        subfolder: str = "",
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
598
599
600
601
602
603
604
605
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
606
            )
Nathan Habib's avatar
Nathan Habib committed
607
        )
608

609
        if not autogptq and not gptqmodel:
610
            if model_kwargs.get("load_in_4bit", None):
Baber Abbasi's avatar
Baber Abbasi committed
611
612
613
                assert transformers.__version__ >= "4.30.0", (
                    "load_in_4bit requires transformers >= 4.30.0"
                )
614
615
616
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
617
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
618
619
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
620

621
622
623
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
624
                torch_dtype=get_dtype(dtype),
625
                trust_remote_code=trust_remote_code,
626
                gguf_file=gguf_file,
627
                quantization_config=quantization_config,
628
                subfolder=subfolder,
629
630
631
                **model_kwargs,
            )
        else:
632
633
634
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
635
636
                )

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
668

669
670
671
672
673
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

674
        if peft:
675
676
677
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

678
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
679
680
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
681
682
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
683
684
685
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
686
                self._model.resize_token_embeddings(len(self.tokenizer))
687
688
689
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
729
        gguf_file: Optional[str] = None,
730
        add_bos_token: Optional[bool] = False,
731
        subfolder: Optional[str] = "",
732
733
734
735
736
737
738
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
739
740
741
742
743
744
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
745
        if not tokenizer and gguf_file is not None:
746
747
748
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
749

750
751
752
        if add_bos_token:
            kwargs["add_bos_token"] = True

753
754
755
        if subfolder:
            kwargs["subfolder"] = subfolder

756
757
758
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
759
                    tokenizer, **kwargs
760
761
762
763
764
765
766
767
768
769
770
771
772
773
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
774
                model_name, **kwargs
775
776
777
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
778
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
779
780
781
782
783
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
784
785
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
786
787
        else:
            max_length = self.max_length
788
789
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
790

Benjamin Fattori's avatar
Benjamin Fattori committed
791
792
793
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
794
            if self.backend == "seq2seq":
795
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
796
797
798
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
799
800
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
801
802
803
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
804
805
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
806
807
808
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
809
            for _ in range(5):
810
811
812
813
814
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
815

Benjamin Fattori's avatar
Benjamin Fattori committed
816
817
            return batch_size

818
819
820
821
822
823
824
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
825

826
827
828
829
830
831
832
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
833
            clear_torch_cache()
834
835
            return batch_size

836
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
837
838
        return batch_size

baberabb's avatar
baberabb committed
839
840
841
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
842
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
843
844
845
846
847
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
848
        if add_special_tokens is None:
849
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
850
851
852
853
854
855
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
856

Lintang Sutawika's avatar
Lintang Sutawika committed
857
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
858

859
860
861
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
862

863
864
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
865
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
866
867
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
868
        padding_side: str = "left",
869
870
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
871
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
872
873
874
875
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
876
        add_special_tokens = {}
877
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
878
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
879
880
881

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
882
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
883
884
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
885
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
886
887
        )
        if left_truncate_len:
888
889
890
891
892
893
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
894
895
896
897
898
899
900
901
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
902
903
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
904
905
906

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
907
        :param inps: torch.Tensor
908
909
910
911
912
913
914
915
916
917
918
919
920
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
            with torch.autocast(
                device_type=self.device.type,
                dtype=self.mixed_precision_dtype,
                enabled=self.mixed_precision_dtype is not None,
            ):
                if attn_mask is not None or labels is not None:
                    assert attn_mask is not None and labels is not None
                    assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
                    return self.model(
                        input_ids=inps, attention_mask=attn_mask, labels=labels
                    ).logits
                else:
                    assert self.AUTO_MODEL_CLASS in (
                        transformers.AutoModelForCausalLM,
                        transformers.AutoModelForVision2Seq,
                    )
                    return self.model(inps).logits
938
939

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
940
        # temperature = 0.0 if not set
941
942
943
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
944
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
945
        do_sample = generation_kwargs.get("do_sample", None)
946
947
948
949
950

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
951
952
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
953
954
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
955
            self.tokenizer, stop, context.shape[1], context.shape[0]
956
        )
957
958
959
960
961
962
963
964
965
966
967
968
969
        with torch.autocast(
            device_type=self.device.type,
            dtype=self.mixed_precision_dtype,
            enabled=self.mixed_precision_dtype is not None,
        ):
            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
970

Baber Abbasi's avatar
Baber Abbasi committed
971
972
973
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
974
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
975
976
977
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
978
979
980
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
981
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
982
983
984
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
985
            # only discard right-padding.
986
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
987
988
            logits = logits[:contlen]

989
990
        return logits

991
992
993
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
994
995
996
997
998
999
1000
1001
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

1002
1003
1004
1005
1006
1007
1008
1009
1010
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
1011
        ):
1012
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
1013
1014
1015
1016
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
1017
                        prefix_token=self.prefix_token_id,
1018
1019
1020
1021
1022
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1023
1024

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1025
            windows = [(None,) + x for x in rolling_token_windows]
1026

1027
1028
1029
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1051
            )
1052
1053
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1054

1055
1056
1057
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1074

1075
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1090
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1091
1092
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1093

Ethan Smith's avatar
Ethan Smith committed
1094
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1095
1096
1097
1098
1099
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1100
1101
1102
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1103
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1104
            """Defines the key for the sorted method"""
1105
1106
1107
1108
1109
1110
1111
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1112
            toks = req[1] + req[2]
1113
1114
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1115
1116
1117
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1118
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1119
1120
1121
1122
1123
1124
1125
1126
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1127
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1128
1129
1130
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1131
1132
1133

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1134
1135
1136
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1137
1138
1139
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1140
1141
1142
1143
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1144
1145
1146
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1147
            else None
1148
1149
        )

Baber Abbasi's avatar
Baber Abbasi committed
1150
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1151
1152
1153
1154
1155
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1156
        for chunk in chunks:
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1176
                # how this all works (illustrated on a causal decoder-only setup):
1177
1178
1179
1180
1181
1182
1183
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1184
                if self.backend == "causal":
1185
1186
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1187
                        eval_logger.warning(
1188
1189
1190
1191
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1192
1193
1194
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1195
1196
                        device=self.device,
                    )
1197
                    (inplen,) = inp.shape
1198
                elif self.backend == "seq2seq":
1199
1200
1201
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1202
                        device=self.device,
1203
                    )
1204
                    (inplen,) = inp.shape
1205
1206
1207
1208

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1209
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1210
                        (continuation_enc)[-self.max_length :],
1211
1212
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1213
                        dtype=torch.long,
1214
1215
                        device=self.device,
                    )
1216
1217
                    (contlen,) = cont.shape

1218
1219
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1220
1221
1222
1223
1224
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1225

haileyschoelkopf's avatar
haileyschoelkopf committed
1226
1227
1228
1229
1230
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1231
1232
1233
1234

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1235

1236
1237
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1238
            if self.backend == "causal":
1239
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1240
1241
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1242
            elif self.backend == "seq2seq":
1243
                # TODO: left-pad encoder inps and mask?
1244
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1245
1246
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1247
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1248
1249
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1250
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1251
1252
1253
1254
1255
1256
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1257
1258

            multi_logits = F.log_softmax(
1259
1260
1261
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1262
            )  # [batch, padding_length (inp or cont), vocab]
1263

Baber Abbasi's avatar
Baber Abbasi committed
1264
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1265
1266
1267
1268
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1269
                # take only logits in the continuation
1270
                # (discard context toks if decoder-only ; discard right-padding)
1271
1272
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1273
                ctx_len = (
1274
                    inplen + (logits.shape[0] - padding_len_inp)
1275
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1276
1277
                    else None
                )
1278
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1279
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1280
1281
1282
1283

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1298
1299
1300
1301
1302
1303
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1316
1317
1318
1319
1320
1321
1322
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1323
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1324
1325

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1326

1327
1328
        return re_ord.get_original(res)

1329
1330
1331
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1332
        res = []
1333

Baber Abbasi's avatar
Baber Abbasi committed
1334
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1335
            """Defines the key for the sorted method"""
1336
1337
1338
1339
1340
1341
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1342
1343
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1344

1345
1346
        pbar = tqdm(
            total=len(requests),
1347
            disable=(disable_tqdm or (self.rank != 0)),
1348
1349
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1350
        adaptive_batch_size = None
1351
1352
1353
1354
1355
1356
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1357
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1370

Baber Abbasi's avatar
Baber Abbasi committed
1371
1372
1373
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1374
1375
1376
1377
1378
1379
1380
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1381
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1382
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1383
1384
1385
1386
1387
1388
1389
1390
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1391
1392
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1393
1394
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1395
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1396
                )
Baber Abbasi's avatar
Baber Abbasi committed
1397
1398
1399
1400
1401
1402
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1403
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1404
1405
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1406
1407
1408
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1409
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1421

Baber Abbasi's avatar
Baber Abbasi committed
1422
1423
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1424

Baber Abbasi's avatar
Baber Abbasi committed
1425
1426
1427
1428
1429
1430
1431
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1432

Baber Abbasi's avatar
Baber Abbasi committed
1433
1434
1435
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1436
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1437
                    cont_toks = cont_toks[context_enc.shape[1] :]
1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
                # Handle integer think_end_token: find last occurrence and strip tokens after it
                if isinstance(self.think_end_token, int):
                    think_token_indices = [
                        i
                        for i, token in enumerate(cont_toks)
                        if token == self.think_end_token
                    ]
                    if think_token_indices:
                        cont_toks = cont_toks[think_token_indices[-1] + 1 :]
1448

1449
                s = self.tok_decode(cont_toks)
Baber Abbasi's avatar
Baber Abbasi committed
1450

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
                # Strip leading whitespace if we removed thinking tokens
                if isinstance(self.think_end_token, int):
                    s = s.lstrip()

                # Apply post-processing: remove stop sequences and string-based thinking tokens
                s = postprocess_generated_text(
                    generation=s,
                    stop=until,
                    think_end_token=self.think_end_token
                    if isinstance(self.think_end_token, str)
                    else None,
                )
Baber Abbasi's avatar
Baber Abbasi committed
1463
1464
1465
1466
1467
1468
                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1469

1470
        pbar.close()
1471

Baber Abbasi's avatar
Baber Abbasi committed
1472
        return res
1473

Baber Abbasi's avatar
Baber Abbasi committed
1474
1475
1476
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
1477
1478
1479
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1480
1481
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1482
1483
1484
1485
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1486
1487
1488
1489
1490
1491
1492
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1493
1494
1495
1496
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1497
1498
1499
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1500

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1525
                eval_logger.debug(
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info