test_flash_attn.py 93.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size_n
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def attn_bias_from_alibi_slopes(
    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


Tri Dao's avatar
Tri Dao committed
54
55
56
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
57
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
58
    elif mode == "random":
59
60
61
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
62
    elif mode == "third":
63
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
64
65
66
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
67
68
69
    return padding_mask


Tri Dao's avatar
Tri Dao committed
70
71
72
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
73
74
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
75
76
77
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
78
79
80
81
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
82
83
84
85
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
86
87
88

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
89
90
91
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
92
    else:
Tri Dao's avatar
Tri Dao committed
93
94
95
96
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
97
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
98
99
100
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
111
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
112
113
114

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
115
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
116
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
117
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
118
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
119
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
120
        else:
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
132
133
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
134
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
135
136
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
137
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
138
        else:
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
155
156
157
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
158
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
176
177


Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
185
):
186
187
188
189
190
191
192
193
194
195
196
197
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
198
199
200
201
202
203
204
205
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
206
207


Tri Dao's avatar
Tri Dao committed
208
209
210
211
212
213
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
214
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
215
216
217
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
218
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
219
220
221
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
222
223
224
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
225
226
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
227
228
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
229
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
230
231
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
232
233
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
234
235
236
237
238
239
240
241
242
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
243
244
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
245
246
247
248
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
249
250
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
251
252
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
253
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
254
    else:
Tri Dao's avatar
Tri Dao committed
255
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
256
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
257
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
263
264
265
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
266
        )
Tri Dao's avatar
Tri Dao committed
267
        scores.masked_fill_(local_mask, float("-inf"))
268
269
270
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
Tri Dao's avatar
Tri Dao committed
271
272
273
274
275
276
277
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
278
279
280
281
282
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
283
284
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
285
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
286
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
287
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
288
289
290
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
291
292
293
294
295
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
296
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
297
298
299
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
300
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
301
302
303
304
305
306
307
308
309
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
310
        attn_bias,
Tri Dao's avatar
Tri Dao committed
311
312
313
314
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
315
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
316
317
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
318
319


Tri Dao's avatar
Tri Dao committed
320
321
322
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
323
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
324
325
326
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
327
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
328
329
330
331
332
333
334
335
336
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
337
        attn_bias,
Tri Dao's avatar
Tri Dao committed
338
339
340
341
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
342
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
343
344
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
345
346
347
348
349
350
351
352
353
354
355


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
356
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
375
376
377
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
378
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
379
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
380
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
381
382
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
383
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
384
385
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
386
387
388
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
389
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
396
397
398
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
399
):
Tri Dao's avatar
Tri Dao committed
400
401
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
402
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
403
404
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
405
    """
Tri Dao's avatar
Tri Dao committed
406
407
    if causal:
        window_size = (window_size[0], 0)
408
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
409
    S_converted = S
Tri Dao's avatar
Tri Dao committed
410
411
412
413
414
415
416
417
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
418
        )
Tri Dao's avatar
Tri Dao committed
419
420
        local_mask = F.pad(
            local_mask,
421
422
423
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
424
        S_converted = S_converted.masked_fill(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
425
426
427

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
428
429
430
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
431
    if query_padding_mask is not None:
432
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
433
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
434
435
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
436
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
437
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
438
439
440
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
441
442


Tri Dao's avatar
Tri Dao committed
443
444
445
446
447
448
449
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
450
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
451
452
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
453
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
454
):
Tri Dao's avatar
Tri Dao committed
455
456
457
458
459
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
460
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
461
462
463
464
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
465
466
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
467
468
469
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
470
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
471
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
472
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
473
474
475
476
477
478
479
480
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
481
        )
Tri Dao's avatar
Tri Dao committed
482
        scores.masked_fill_(local_mask, float("-inf"))
483
484
    if attn_bias is not None:
        scores = scores + attn_bias.to(dtype=scores.dtype)
Tri Dao's avatar
Tri Dao committed
485
    block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal)
Tri Dao's avatar
Tri Dao committed
486
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
487
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
488
    lse = torch.logsumexp(lse_block, dim=-1)
489
490
491
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
492
493
494
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
495
496
    attn_norm = torch.cat(
        [
497
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
498
499
500
501
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
502
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
503
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
504
505
506
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
507
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
508
509
510
511
512
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
513
):
Tri Dao's avatar
Tri Dao committed
514
515
516
517
518
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
519
520
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
521
522
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
523
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
524
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
525
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
526
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
527
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
528
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
529
530
531
532
533
534
535
536
537
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
538
        )
Tri Dao's avatar
Tri Dao committed
539
540
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
541
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
542
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
543
544


Tri Dao's avatar
Tri Dao committed
545
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
546
# @pytest.mark.parametrize("dtype", [torch.float16])
547
@pytest.mark.parametrize("deterministic", [False, True])
548
# @pytest.mark.parametrize("deterministic", [False])
549
@pytest.mark.parametrize("alibi", [False, True])
550
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
551
@pytest.mark.parametrize("local", [False, True])
552
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
553
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
554
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
555
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
556
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
557
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
558
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
559
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
560
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
561
# @pytest.mark.parametrize("seqlen", [512])
Tri Dao's avatar
Tri Dao committed
562
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
563
# @pytest.mark.parametrize("dropout_p", [0.0])
564
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
565
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
566
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
567
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
568
569
    # set seed
    torch.random.manual_seed(0)
570
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
571
    nheads = 9
Tri Dao's avatar
Tri Dao committed
572
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
573
574
575
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
576
577
578
579
580
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
581
    out, lse, S_dmask = flash_attn_qkvpacked_func(
582
583
584
585
586
        qkv,
        dropout_p,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
587
        deterministic=deterministic,
588
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
589
    )
Tri Dao's avatar
Tri Dao committed
590
591
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
592
593
594
595
596
597
598
599
600
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
601
        )
Tri Dao's avatar
Tri Dao committed
602
603
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
604
605
606
607
608
609
610
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
611
            attn_bias,
Tri Dao's avatar
Tri Dao committed
612
613
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
614
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
615
        )
Tri Dao's avatar
Tri Dao committed
616
617
618
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
619
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
620
621
622
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
623
    out_ref, attn_ref = attention_qkvpacked_ref(
624
        qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
625
    )
Tri Dao's avatar
Tri Dao committed
626
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
627
628
        qkv,
        None,
629
        attn_bias,
Tri Dao's avatar
Tri Dao committed
630
631
632
633
634
635
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
636
    )
Tri Dao's avatar
Tri Dao committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
655
656
657
658
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
659
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
660
661
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
662
663
664
665
666

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
667
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
668
669
670
671
672
673
674
675
676
677
678
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
679
680
681

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
682
683
684
685
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
686
687
688
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
689

690
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
691
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
692
693


Tri Dao's avatar
Tri Dao committed
694
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
695
# @pytest.mark.parametrize('dtype', [torch.float16])
696
697
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
698
699
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
700
701
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
702
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
703
# @pytest.mark.parametrize('causal', [False])
704
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
705
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
706
# @pytest.mark.parametrize('d', [64])
707
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
708
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
709
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
710
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
711
712
713
def test_flash_attn_varlen_qkvpacked(
    seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
714
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
715
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
716
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
717
718
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
719
720
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
721
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
722
723
724
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
725

Tri Dao's avatar
Tri Dao committed
726
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
727
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
728
729
730
731
732
733
734
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
735

Tri Dao's avatar
Tri Dao committed
736
737
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
738
    )
Tri Dao's avatar
Tri Dao committed
739
740

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
741
742
743
744
745
746
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
747
        alibi_slopes=alibi_slopes,
748
        deterministic=deterministic,
Tri Dao's avatar
Tri Dao committed
749
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
750
    )
Tri Dao's avatar
Tri Dao committed
751
752
753
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
754
755
756
757
758
759
760
761
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
762
            window_size=window_size,
763
        )
Tri Dao's avatar
Tri Dao committed
764
765
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
766
767
768
769
770
771
772
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
773
            attn_bias,
Tri Dao's avatar
Tri Dao committed
774
775
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
776
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
777
778
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
779
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
780
781
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
782
783
784
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
785
    out_ref, attn_ref = attention_qkvpacked_ref(
786
787
788
789
790
791
792
        qkv,
        key_padding_mask,
        attn_bias,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
793
794
795
796
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
797
        attn_bias,
Tri Dao's avatar
Tri Dao committed
798
799
800
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
801
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
802
803
804
805
806
807
808
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
809
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
810
811
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
812
813

    g = torch.randn_like(out)
814
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
815
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
816
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
817
818
819
820
821
822
823
824
825
826
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
827
828
829

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
830
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
831

Tri Dao's avatar
Tri Dao committed
832
833
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
834
835
836
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
837

838
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
839
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
840
841


Tri Dao's avatar
Tri Dao committed
842
@pytest.mark.parametrize("kvpacked", [True, False])
843
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
844
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
845
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
846
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
847
# @pytest.mark.parametrize("mha_type", ["mha"])
848
849
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
850
851
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
852
853
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
854
@pytest.mark.parametrize("causal", [False, True])
855
# @pytest.mark.parametrize("causal", [True])
856
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
857
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
858
859
860
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
861
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
877
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
878
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
879
# @pytest.mark.parametrize("dropout_p", [0.17])
Tri Dao's avatar
Tri Dao committed
880
def test_flash_attn_output(
881
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
882
):
Tri Dao's avatar
Tri Dao committed
883
884
885
886
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
887
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
888
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
889
890
    # set seed
    torch.random.manual_seed(0)
891
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
892
893
894
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
895
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
896
897
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
898
899
900
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
901
    else:
Tri Dao's avatar
Tri Dao committed
902
903
904
905
906
907
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
908
909
910
911
912
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
913
914
915

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
916
917
918
919
920
921
            q,
            kv,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
922
            deterministic=deterministic,
923
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
924
925
926
        )
    else:
        out, lse, S_dmask = flash_attn_func(
927
928
929
930
931
932
933
            q,
            k,
            v,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
934
            deterministic=deterministic,
935
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
936
937
938
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
939
940
941
942
943
944
945
946
947
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
948
        )
Tri Dao's avatar
Tri Dao committed
949
950
951
952
953
954
955
956
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
957
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
958
959
960
961
962
963
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
964
            attn_bias,
Tri Dao's avatar
Tri Dao committed
965
966
967
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
968
        )
Tri Dao's avatar
Tri Dao committed
969
970
971
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
972
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
973
974
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
975

Tri Dao's avatar
Tri Dao committed
976
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
977
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
978
979
980
981
            q,
            kv,
            None,
            None,
982
            attn_bias,
Tri Dao's avatar
Tri Dao committed
983
984
985
986
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
987
988
989
990
991
992
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
993
            attn_bias,
Tri Dao's avatar
Tri Dao committed
994
995
996
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
997
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
998
999
1000
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1001
    else:
Tri Dao's avatar
Tri Dao committed
1002
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1003
1004
1005
1006
1007
            q,
            k,
            v,
            None,
            None,
1008
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1009
1010
1011
1012
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1013
1014
1015
1016
1017
1018
1019
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
1020
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1021
1022
1023
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1024
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1025
1026
1027
1028
1029
1030
1031
1032
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1033
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1034
1035
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1036
1037
1038

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1039
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1040
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1041
1042
1043
1044
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1045
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
1046
1047
1048
1049
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1050
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1051
1052
1053
1054
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1055
1056
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1084
1085
1086

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1087
1088
1089
1090
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1091
1092
1093
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1094

1095
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1096
1097
1098
1099
1100
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
1101
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1102
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1103
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1104
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1105
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1106
# @pytest.mark.parametrize('mha_type', ["mqa"])
1107
1108
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1109
1110
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1111
1112
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1113
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1114
# @pytest.mark.parametrize('causal', [True])
1115
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1116
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1117
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1118
1119
1120
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1121
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1134
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1135
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
1136
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1137
def test_flash_attn_varlen_output(
1138
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
1139
1140
1141
1142
1143
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1144
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
1145
    device = "cuda"
1146
1147
    # set seed
    torch.random.manual_seed(0)
1148
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
1149
1150
1151
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1152
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1153
1154
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1155
1156
1157
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1158
    else:
Tri Dao's avatar
Tri Dao committed
1159
1160
1161
1162
1163
1164
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1165

Tri Dao's avatar
Tri Dao committed
1166
1167
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1168
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
1169
1170
1171
1172
1173
1174
1175
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1176
1177

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1191
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1192
1193
1194
1195
1196
1197
1198
1199
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1200
            window_size=window_size,
1201
            alibi_slopes=alibi_slopes,
1202
            deterministic=deterministic,
1203
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1204
1205
        )
    else:
Tri Dao's avatar
Tri Dao committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1221
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1231
            window_size=window_size,
1232
            alibi_slopes=alibi_slopes,
1233
            deterministic=deterministic,
1234
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1235
        )
Tri Dao's avatar
Tri Dao committed
1236
1237
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1238
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1239
1240
1241
1242
1243
1244
1245
1246
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1247
            window_size=window_size,
1248
        )
Tri Dao's avatar
Tri Dao committed
1249
1250
1251
1252
1253
1254
1255
1256
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1257
1258
1259
1260
1261
1262
1263
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
1264
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1265
1266
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1267
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1268
1269
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1270
1271
1272
1273
1274
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1275
1276
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1277
1278
1279
1280
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1281
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1282
1283
1284
1285
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1286
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1287
1288
1289
1290
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1291
1292
1293
1294
1295
1296
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1297
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1298
1299
1300
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1301
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1302
1303
1304
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1305
    else:
Tri Dao's avatar
Tri Dao committed
1306
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1307
1308
1309
1310
1311
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1312
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1313
1314
1315
1316
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1317
1318
1319
1320
1321
1322
1323
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1324
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1325
1326
1327
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1328
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1329
1330
1331
1332
1333
1334
1335
1336
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1337
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1338
1339
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1340
1341

    g = torch.randn_like(out)
1342
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1343
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1344
1345
1346
1347
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1348
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1349
1350
1351
1352
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1353
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1354
1355
1356
1357
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1358
1359
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1360
1361
1362
1363
1364
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1365
1366
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1377
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1390
1391
1392

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1393
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1394

Tri Dao's avatar
Tri Dao committed
1395
1396
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1397
1398
1399
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1400

1401
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
1402
1403
1404
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1405

1406

Tri Dao's avatar
Tri Dao committed
1407
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1408
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1409
1410
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1411
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1412
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1435
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1447
    batch_size = 8
1448
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1449
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1450
1451
1452
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1453
1454
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
1455
        q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1456
    )
1457
1458
1459
1460
1461
1462
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1463
        None,
1464
1465
1466
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1467
        window_size=window_size,
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1479
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1512
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
1513
1514
1515
1516
1517
1518
1519
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1520
1521
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1522
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1523
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1524
1525
1526
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1527
# @pytest.mark.parametrize("d", [64])
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
1545
1546
# TODO: add smaller page sizes when https://github.com/Dao-AILab/flash-attention/pull/824 is merged
@pytest.mark.parametrize("paged_kv_block_size", [None, 256, 512])
1547
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
1548
1549
1550
def test_flash_attn_varlen_causal(
    seqlen_q, seqlen_k, swap_sq_sk, d, local, paged_kv_block_size, dtype
):
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1562
    batch_size = 8
1563
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1564
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1565
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

    if paged_kv_block_size is None:
        k = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        block_table = None
    else:
        k, v, block_table, k_cache_paged, v_cache_paged, num_blocks = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads, d, device, dtype
        )
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
1598
1599
        k_unpad if paged_kv_block_size is None else k_cache_paged,
        v_unpad if paged_kv_block_size is None else v_cache_paged,
1600
1601
1602
1603
1604
1605
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1606
        window_size=window_size,
1607
        block_table=block_table,
1608
1609
1610
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1611
1612
1613
1614
1615
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1616
        None,
Tri Dao's avatar
Tri Dao committed
1617
1618
1619
1620
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1621
1622
1623
1624
1625
1626
1627
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1628
        None,
1629
1630
1631
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1632
        window_size=window_size,
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1644
1645
    test_backward = (d <= MAX_HEADDIM_SM8x or d > 224 or is_sm80 or is_sm90) and block_table is None
    if test_backward:
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1681
    if test_backward:
1682
1683
1684
1685
1686
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1687
1688
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
1689
1690
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1691
1692
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1693
@pytest.mark.parametrize("local", [False, True])
1694
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1695
1696
1697
1698
1699
1700
1701
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1702
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1703
1704
1705
1706
1707
1708
1709
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1710
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1720
1721
1722
def test_flash_attn_splitkv(
    seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
1723
1724
1725
1726
1727
1728
1729
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1730
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1731
1732
1733
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
1734
1735
1736
1737
1738
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1739
    out, lse, _ = flash_attn_func(
1740
1741
1742
1743
1744
1745
1746
        q,
        k,
        v,
        0.0,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
1747
        deterministic=deterministic,
1748
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1749
1750
    )
    out_ref, attn_ref = attention_ref(
1751
        q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1752
    )
Tri Dao's avatar
Tri Dao committed
1753
1754
1755
1756
1757
1758
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1759
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1760
1761
1762
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1763
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1775
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1808
    mult = 2 if not alibi else 8
1809
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
1810
1811
1812
        assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
        assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
        assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
Tri Dao's avatar
Tri Dao committed
1813

1814

1815
1816
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1817
@pytest.mark.parametrize("num_splits", [1, 0])
1818
# @pytest.mark.parametrize("num_splits", [1])
Tri Dao's avatar
Tri Dao committed
1819
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1820
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1821
@pytest.mark.parametrize("new_kv", [False, True])
1822
1823
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
Tri Dao's avatar
Tri Dao committed
1824
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
1825
@pytest.mark.parametrize("local", [False, True])
1826
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1827
@pytest.mark.parametrize("causal", [False, True])
1828
# @pytest.mark.parametrize("causal", [False])
1829
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1830
1831
1832
1833
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1834
# @pytest.mark.parametrize("rotary_fraction", [0.0])
skrider's avatar
skrider committed
1835
# @pytest.mark.parametrize("paged_kv_block_size", [None, 256, 512])
skrider's avatar
skrider committed
1836
@pytest.mark.parametrize("paged_kv_block_size", [16, 256, 512])
skrider's avatar
skrider committed
1837
1838
# @pytest.mark.parametrize("has_batch_idx", [False, True])
@pytest.mark.parametrize("has_batch_idx", [False])
Tri Dao's avatar
Tri Dao committed
1839
1840
@pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1841
1842
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1843
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1861
def test_flash_attn_kvcache(
1862
1863
1864
    seqlen_q,
    seqlen_k,
    d,
1865
    has_batch_idx,
Tri Dao's avatar
Tri Dao committed
1866
    paged_kv_block_size,
1867
1868
1869
1870
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1871
    local,
1872
    alibi,
1873
1874
1875
1876
    new_kv,
    mha_type,
    num_splits,
    dtype,
1877
):
Tri Dao's avatar
Tri Dao committed
1878
1879
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1880
1881
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1882
1883
    if has_batch_idx and paged_kv_block_size is not None:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1884
1885
1886
1887
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1888
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1889
    nheads = 6
1890
1891
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1892
1893
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1894
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1895
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1896
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1897
    if new_kv:
1898
1899
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1900
1901
    else:
        k, v = None, None
Tri Dao's avatar
Tri Dao committed
1902
1903
1904
1905
1906
    if paged_kv_block_size is None:
        k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        block_table = None
    else:
1907
1908
1909
1910
1911
1912
1913
1914
1915
        (
            k_cache,
            v_cache,
            block_table,
            k_cache_paged,
            v_cache_paged,
            num_blocks,
        ) = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype
Tri Dao's avatar
Tri Dao committed
1916
        )
1917
    cache_seqlens = torch.randint(
Tri Dao's avatar
Tri Dao committed
1918
        0 if new_kv else 1,
1919
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
Tri Dao's avatar
Tri Dao committed
1920
        (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
1921
1922
        if new_kv
        else (seqlen_k + 1),
1923
1924
1925
1926
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
1927
1928
1929
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
1930
    if has_batch_idx:
1931
1932
1933
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
            :batch_size
        ]
1934
1935
    else:
        cache_batch_idx = None
1936
1937
1938
1939
1940
1941
1942
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1943
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
1944
    if rotary_dim > 0:
Tri Dao's avatar
Tri Dao committed
1945
1946
1947
1948
1949
1950
1951
1952
1953
        angle = (
            torch.rand(
                seqlen_k if paged_kv_block_size is None else num_blocks * paged_kv_block_size,
                rotary_dim // 2,
                device=device,
            )
            * 2
            * math.pi
        )
1954
1955
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1956
        if causal or local:
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
1979
    # k_cache[:, 64:] = -1
1980
1981
1982
1983
1984
1985
    k_cache_ref = (
        k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
    v_cache_ref = (
        v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
Tri Dao's avatar
Tri Dao committed
1986
    if new_kv:
1987
1988
1989
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
1990
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
1991
1992
1993
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
1994
    out = flash_attn_with_kvcache(
1995
        q,
Tri Dao's avatar
Tri Dao committed
1996
1997
        k_cache if paged_kv_block_size is None else k_cache_paged,
        v_cache if paged_kv_block_size is None else v_cache_paged,
1998
1999
        k,
        v,
Tri Dao's avatar
Tri Dao committed
2000
2001
2002
2003
2004
        rotary_cos=cos,
        rotary_sin=sin,
        cache_seqlens=cache_seqlens,
        cache_batch_idx=cache_batch_idx,
        block_table=block_table,
2005
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2006
        window_size=window_size,
2007
        rotary_interleaved=rotary_interleaved,
2008
        alibi_slopes=alibi_slopes,
2009
        num_splits=num_splits,
2010
    )
Tri Dao's avatar
Tri Dao committed
2011
2012
2013
2014
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
2015
2016
2017
2018
2019
2020
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
2021
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
2022
2023
2024
2025
2026
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2027
        attn_bias,
Tri Dao's avatar
Tri Dao committed
2028
2029
2030
2031
        0.0,
        None,
        causal=causal,
        window_size=window_size,
2032
2033
    )
    out_pt, _ = attention_ref(
2034
        q_ro,
2035
2036
2037
2038
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2039
        attn_bias,
2040
2041
2042
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2043
        window_size=window_size,
2044
2045
2046
        upcast=False,
        reorder_ops=True,
    )
Tri Dao's avatar
Tri Dao committed
2047
2048
2049
2050
2051
2052
2053
2054
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
Tri Dao's avatar
Tri Dao committed
2055
        if paged_kv_block_size is None:
2056
2057
2058
2059
2060
2061
            k_cache_select = (
                k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
            )
            v_cache_select = (
                v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
            )
Tri Dao's avatar
Tri Dao committed
2062
2063
        else:
            k_cache_select = rearrange(
2064
                k_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2065
2066
2067
2068
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
            v_cache_select = rearrange(
2069
                v_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2070
2071
2072
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
2073
2074
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
2075
2076
    mult = 3 if not alibi else 5
    assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
2077

Tri Dao's avatar
Tri Dao committed
2078

2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
def _generate_block_kvcache(seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype):
    num_blocks = math.ceil(seqlen_k / paged_kv_block_size) * batch_size * 3
    k_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    v_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    block_table = rearrange(
        torch.randperm(num_blocks, dtype=torch.int32, device=device),
        "(b nblocks) -> b nblocks",
        b=batch_size,
    )
    k_cache = rearrange(
        # pytorch 1.12 doesn't have indexing with int32
        k_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    v_cache = rearrange(
        v_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    return k_cache, v_cache, block_table, k_cache_paged, v_cache_paged, num_blocks


2106
2107
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
2108
@pytest.mark.parametrize("causal", [False, True])
2109
2110
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
2111
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
2112
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
2113
# @pytest.mark.parametrize('d', [128])
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
2133
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
2134
2135
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2136
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
2137
2138
    # set seed
    torch.random.manual_seed(0)
2139
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
2140
    nheads = 4
2141
2142
2143
2144
2145
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2146
    g = torch.randn_like(out0)
2147
    if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
2148
2149
2150
2151
2152
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
2153
        # Numerical error if we just do any arithmetic on dq
2154
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2155

2156
2157
2158
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2159
2160
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
2161

2162
        if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
2163
2164
2165
2166
2167
2168
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
2169
            if not dq_equal:
2170
2171
2172
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
2173
            assert dq_equal
2174
2175


Tri Dao's avatar
Tri Dao committed
2176
2177
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2178
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2179
@pytest.mark.parametrize("d", [16, 32, 64])
2180
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
2181
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
2182
2183
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2184
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2185
2186
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
2187
    device = "cuda"
2188
2189
2190
2191
2192
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
2193
2194
2195
2196
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2213
2214
2215
2216
2217
2218
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2219
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
2232
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
2233
@pytest.mark.parametrize("causal", [False, True])
2234
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2235
@pytest.mark.parametrize("d", [64, 128])
2236
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
2237
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
2238
2239
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2240
    """We previously had a bug where we were using the wrong strides of dout, which shows up
2241
2242
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2243
    device = "cuda"
2244
2245
2246
2247
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2248
2249
2250
2251
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2268
2269
2270
2271
2272
2273
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2274
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2288
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2289
@pytest.mark.parametrize("d", [16, 32, 64])
2290
2291
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2292
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2293
2294
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2295
    device = "cuda"
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)

    g = torch.randn_like(out)
2369
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
        dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
            assert torch.equal(dq, dq0)


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
        window_size=window_size,
        deterministic=True,
    )

    g = torch.randn_like(out)
2457
    if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
2458
2459
2460
2461
2462
2463
        dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
            assert torch.equal(dv, dv)
            assert torch.equal(dk, dk)
            assert torch.equal(dq, dq)