"vscode:/vscode.git/clone" did not exist on "144bc3c2f56ffff60a45394d277e0b0b2ccc2424"
reduce_blockwise.cpp 12.3 KB
Newer Older
1
2
3
4
5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
6

Chao Liu's avatar
Chao Liu committed
7
8
9
10
11
12
13
14
15
16
17
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/host_tensor/host_reduction.hpp"
18
19
20
21

using namespace ck;
using namespace ck::tensor_operation::device;

22
23
using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
24
25
using AccDataType = float;

Qianfeng's avatar
Qianfeng committed
26
27
constexpr int Rank         = 4;
constexpr int NumReduceDim = 3;
28

29
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
30
31
constexpr bool PropagateNan         = true;
constexpr bool OutputIndex          = false;
32

33
using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
34
using InElementwiseOperation =
35
    typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
36
using AccElementwiseOperation =
37
    typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
using DeviceReduceInstance = DeviceReduceMultiBlock<InDataType,
                                                    AccDataType,
                                                    OutDataType,
                                                    Rank,
                                                    NumReduceDim,
                                                    ReduceOperation,
                                                    InElementwiseOperation,
                                                    AccElementwiseOperation,
                                                    InMemoryDataOperationEnum::Set,
                                                    PropagateNan,
                                                    OutputIndex,
                                                    false, // HaveIndexInputIfOutputIndex
                                                    256,
                                                    4,
                                                    64,
                                                    1,
                                                    1,
                                                    0,
                                                    1,
                                                    1>;
59
60
61
62
63
64
65
66
67
68
69
70

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    private:
    int option_index = 0;

    public:
71
72
    std::vector<size_t> inLengths = {16, 64, 32, 960};
    std::vector<float> scales     = {1.0f, 0.0f};
73

JD's avatar
JD committed
74
75
    bool do_verification = true;
    int init_method      = 1;
76
    bool time_kernel     = true;
77
78
79
80
81
82
83
84
85
86

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
87
88
89
        std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
90
        std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
91
92
93
94
    };

    int processArgs(int argc, char* argv[])
    {
95
96
        using ck::host_common::getTypeValuesFromString;

97
        int ch;
98
99
100

        while(1)
        {
101
            ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
133
        time_kernel = static_cast<bool>(std::atoi(argv[optind]));
134
135
136
137
138
139
140
141
142
143
144
145
146

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

int main(int argc, char* argv[])
{
Qianfeng's avatar
Qianfeng committed
147
148
149
    const std::vector<int> reduceDims{0, 1, 2};
    const std::vector<int> invariantDims{3};

150
151
    SimpleAppArgs args;

152
153
154
155
156
    if(argc > 1)
    {
        if(args.processArgs(argc, argv) < 0)
            return (-1);
    };
157
158

    constexpr bool op_support_indices =
159
160
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    // if input is half type, no reason to use float for indiced reduction operation and must use
    // float for non-indiced reduction operation for accuracy
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, ck::half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));

    // if input is float type, no reason to use double for indiced reduction operation
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // indices option can only be used when it is really needed
175
    constexpr bool invalid_reduce_3 = (!op_support_indices && OutputIndex);
176
177
178
179
180
181
182
183
184
185

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(invalid_reduce)
        std::cout << "Reduction setting is not supported, exiting!" << std::endl;

    Tensor<InDataType> in(args.inLengths);

    std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
186
    if(invariantDims.empty())
187
188
        outLengths.push_back(1);
    else
Qianfeng's avatar
Qianfeng committed
189
        for(auto dim : invariantDims)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            outLengths.push_back(args.inLengths[dim]);

    Tensor<OutDataType> out_ref(outLengths);
    Tensor<OutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    float alpha = args.scales[0];
    float beta  = args.scales[1];

206
    std::size_t num_thread = 1;
207
208
209
210
211

    if(args.do_verification)
    {
        switch(args.init_method)
        {
212
213
214
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
215
            if(beta != 0.0f)
216
                out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
217
            break;
218
        case 2:
219
220
221
222
223
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            break;
        default:
224
            in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
225
            if(beta != 0.0f)
226
                out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

243
    size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
244

245
    DeviceMem out_index_dev(indicesSizeInBytes);
246

247
248
249
250
251
252
253
    InElementwiseOperation in_elementwise_op;
    AccElementwiseOperation acc_elementwise_op;

    std::tie(in_elementwise_op, acc_elementwise_op) =
        reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
            static_cast<int32_t>(reduce_total_length));

254
255
    if(args.do_verification)
    {
256
257
258
        ReductionHost<InDataType,
                      AccDataType,
                      OutDataType,
259
260
261
                      ReduceOperation,
                      InElementwiseOperation,
                      AccElementwiseOperation,
262
263
264
                      Rank,
                      NumReduceDim,
                      PropagateNan,
265
                      OutputIndex>
Qianfeng's avatar
Qianfeng committed
266
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
267

268
269
270
271
272
273
274
        hostReduce.Run(alpha,
                       in.mData.data(),
                       beta,
                       out_ref.mData.data(),
                       out_indices_ref.mData.data(),
                       in_elementwise_op,
                       acc_elementwise_op);
275
276
    };

277
278
279
280
281
282
283
284
285
    std::vector<ck::index_t> i_inLengths;
    std::vector<ck::index_t> i_inStrides;
    std::vector<ck::index_t> i_outLengths;
    std::vector<ck::index_t> i_outStrides;

    i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
    i_inStrides.assign(inStrides.begin(), inStrides.end());
    i_outLengths.assign(outLengths.begin(), outLengths.end());
    i_outStrides.assign(outStrides.begin(), outStrides.end());
286
287
288

    auto reduce = DeviceReduceInstance{};

289
290
291
292
293
294
295
296
297
298
299
300
301
    auto argument_ptr = reduce.MakeArgumentPointer(i_inLengths,
                                                   i_inStrides,
                                                   i_outLengths,
                                                   i_outStrides,
                                                   reduceDims,
                                                   alpha,
                                                   beta,
                                                   in_dev.GetDeviceBuffer(),
                                                   nullptr,
                                                   out_dev.GetDeviceBuffer(),
                                                   out_index_dev.GetDeviceBuffer(),
                                                   in_elementwise_op,
                                                   acc_elementwise_op);
302
303
304
305
306
307
308
309
310
311
312
313

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

JD's avatar
JD committed
314
    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
315
316
317
318
319
320
321
322
323

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
                            invariant_total_length * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

Anthony Chang's avatar
Anthony Chang committed
324
    bool pass = true;
325

326
327
328
    if(args.do_verification)
    {
        out_dev.FromDevice(out.mData.data());
329
        pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
330

331
        if(OutputIndex)
332
        {
333
334
            out_index_dev.FromDevice(out_indices.mData.data());
            pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
335
336
        };
    };
337
338

    return (pass ? 0 : 1);
339
}