reduce_blockwise.cpp 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "host_generic_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"

using namespace ck;
using namespace ck::tensor_operation::device;

using InDataType  = half_float::half;
using OutDataType = half_float::half;
using AccDataType = float;

using kInDataType  = ck::half_t;
using kOutDataType = ck::half_t;
using kAccDataType = float;

constexpr int Rank = 4;
using ReduceDims_  = ck::Sequence<0, 1, 2>;

constexpr ReduceTensorOp_t ReduceOpId = ReduceTensorOp_t::NORM2;
constexpr NanPropagation_t NanOpt     = NanPropagation_t::PROPAGATE_NAN;
constexpr bool PropagateNan = (NanOpt == NanPropagation_t::NOT_PROPAGATE_NAN) ? false : true;
constexpr ReduceTensorIndices_t IndicesOpt = ReduceTensorIndices_t::NO_INDICES;

using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;

using DeviceReduceInstance = DeviceReduceBlockWise<kInDataType,
                                                   kAccDataType,
                                                   kOutDataType,
                                                   Rank,
                                                   ReduceDims_,
                                                   ReduceOperation,
                                                   InElementwiseOperation,
                                                   AccElementwiseOperation,
                                                   PropagateNan,
                                                   false,
                                                   256,
                                                   4,
                                                   64,
                                                   1,
                                                   1,
                                                   0,
                                                   1,
                                                   1>;

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"scales", required_argument, nullptr, 'S'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    template <typename T>
    static T getSingleValueFromString(const std::string& valueStr)
    {
        std::istringstream iss(valueStr);

        T ret;

        iss >> ret;

        return (ret);
    };

    template <typename T>
    static std::vector<T> getTypeValuesFromString(const char* cstr_values)
    {
        std::string valuesStr(cstr_values);

        std::vector<T> values;
        std::size_t pos = 0;
        std::size_t new_pos;

        new_pos = valuesStr.find(',', pos);
        while(new_pos != std::string::npos)
        {
            const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);

            T val = getSingleValueFromString<T>(sliceStr);

            values.push_back(val);

            pos     = new_pos + 1;
            new_pos = valuesStr.find(',', pos);
        };

        std::string sliceStr = valuesStr.substr(pos);
        T val                = getSingleValueFromString<T>(sliceStr);

        values.push_back(val);

        return (values);
    };

    private:
    int option_index = 0;

    public:
    std::vector<size_t> inLengths;
    std::vector<float> scales;

    bool do_verification = false;

    int init_method = 1;
    int nrepeat     = 5;

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--scales or -S, comma separated two float values for alpha and beta"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
    };

    int processArgs(int argc, char* argv[])
    {
        unsigned int ch;

        while(1)
        {
            ch = getopt_long(argc, argv, "D:S:v:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'S':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                scales = getTypeValuesFromString<float>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
        nrepeat     = std::atoi(argv[optind]);

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

template <int Rank, typename ReduceDims>
static std::vector<int> get_reduce_dims()
{
    std::vector<int> resDims;

    static_for<0, ReduceDims::Size(), 1>{}([&](auto i) { resDims.push_back(ReduceDims::At(i)); });

    return (resDims);
};

template <int Rank, typename ReduceDims>
static std::vector<int> get_invariant_dims()
{
    std::vector<int> resDims;
    unsigned int incFlag = 0;

    static_for<0, ReduceDims::Size(), 1>{}(
        [&](auto i) { incFlag = incFlag | (0x1 << ReduceDims::At(i)); });

    for(int dim = 0; dim < Rank; dim++)
    {
        if(incFlag & (0x1 << dim))
            continue;
        resDims.push_back(dim);
    };

    return (resDims);
};

int main(int argc, char* argv[])
{
    using namespace ck::host_reduce;

    SimpleAppArgs args;

    if(args.processArgs(argc, argv) < 0)
        return (-1);

    constexpr bool op_support_indices =
        (ReduceOpId == ReduceTensorOp_t::MIN || ReduceOpId == ReduceTensorOp_t::MAX ||
         ReduceOpId == ReduceTensorOp_t::AMAX);

    constexpr bool NeedIndices =
        (op_support_indices && (IndicesOpt != ReduceTensorIndices_t::NO_INDICES));

    // if input is half type, no reason to use float for indiced reduction operation and must use
    // float for non-indiced reduction operation for accuracy
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, ck::half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));

    // if input is float type, no reason to use double for indiced reduction operation
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // indices option can only be used when it is really needed
    constexpr bool invalid_reduce_3 =
        (!op_support_indices && IndicesOpt != ReduceTensorIndices_t::NO_INDICES);

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(invalid_reduce)
        std::cout << "Reduction setting is not supported, exiting!" << std::endl;

    Tensor<InDataType> in(args.inLengths);

    const std::vector<int> InvariantDims = get_invariant_dims<Rank, ReduceDims_>();
    const std::vector<int> ReduceDims    = get_reduce_dims<Rank, ReduceDims_>();

    std::vector<size_t> outLengths;

    if(InvariantDims.empty())
        outLengths.push_back(1);
    else
        for(auto dim : InvariantDims)
            outLengths.push_back(args.inLengths[dim]);

    Tensor<OutDataType> out_ref(outLengths);
    Tensor<OutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    float alpha = args.scales[0];
    float beta  = args.scales[1];

    std::size_t num_thread = std::thread::hardware_concurrency();

    if(args.do_verification)
    {
        switch(args.init_method)
        {
        case 0:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
            break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            break;
        default:
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

    size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int) : 0;

    DeviceMem out_indices_dev(indicesSizeInBytes);

    if(args.do_verification)
    {
        ReductionHost<InDataType, AccDataType, OutDataType, ReduceOpId, PropagateNan, NeedIndices>
            hostReduce(in.mDesc, out_ref.mDesc, InvariantDims, ReduceDims);

        hostReduce.Run(
            alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
    };

    const auto i_inLengths  = to_int_vector(args.inLengths);
    const auto i_inStrides  = to_int_vector(inStrides);
    const auto i_outLengths = to_int_vector(outLengths);
    const auto i_outStrides = to_int_vector(outStrides);

    auto reduce = DeviceReduceInstance{};

    auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths);

    DeviceMem ws_dev(wsSizeInBytes);

    auto argument_ptr =
        reduce.MakeArgumentPointer(i_inLengths,
                                   i_inStrides,
                                   i_outLengths,
                                   i_outStrides,
                                   alpha,
                                   beta,
                                   in_dev.GetDeviceBuffer(),
                                   out_dev.GetDeviceBuffer(),
                                   out_indices_dev.GetDeviceBuffer(),
                                   ws_dev.GetDeviceBuffer(),
                                   InElementwiseOperation{static_cast<int>(reduce_total_length)},
                                   AccElementwiseOperation{static_cast<int>(reduce_total_length)});

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

    float avg_time = invoker_ptr->Run(argument_ptr.get(), args.nrepeat);

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
                            invariant_total_length * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

    if(args.do_verification)
    {
        out_dev.FromDevice(out.mData.data());
        check_error(out_ref, out);

        if(NeedIndices)
        {
            out_indices_dev.FromDevice(out_indices.mData.data());
            check_indices(out_indices_ref, out_indices);
        };
    };
}