Unverified Commit abf4bdb9 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Common forward convolution utility refactor. (#141)



* Convolution ND

* Code unification across dimensions for generating tensor descriptors.
* Example
* Instances

* Move convnd f32 instance file to comply with repo structure.

* Conv 1D tensor layouts.

* Formatting and use ReferenceConv

* Reference ConvFwd supporting 1D and 2D convolution.

* Debug printing TensorLayout name.

* Conv fwd 1D instance f32

* Refactor conv ND example.

Needed to support various conv dimensio.

Needed to support various conv dimensions

* Rename conv nd example director to prevent conflicts.

* Refactor some common utility to single file.

Plus some tests.

* Refactor GetHostTensorDescriptor + UT.

* Add 1D test case.

* Test reference convolution 1d/2d

* Remove some leftovers.

* Fix convolution example error for 1D

* Refactor test check errors utility function.

* Test Conv2D Fwd XDL

* More UT for 1D case.

* Parameterize input & weight initializers.

* Rename example to prevent conflicts.

* Split convnd instance into separate files for 1d/2d

* Address review comments.

* Fix data type for flops/gbytes calculations.

* Assign example number 11.

* 3D cases for convolution utility functions.

* 3D reference convolution.

* Add support for 3D convolution.

* Check for inputs bigger than  2GB.

* Formatting

* Support for bf16/f16/f32/i8 - conv instances + UT.

* Use check_err from test_util.hpp.

* Split convnd test into separate files for each dim.

* Fix data generation and use proper instances.

* Formatting

* Skip tensor initialization if not necessary.

* Fix CMakefiles.

* Remove redundant conv2d_fwd test.

* Lower problem size for conv3D UT.

* 3D case for convnd example.

* Remove leftovers after merge.

* Add Conv Specialization string to GetTypeString

* Skip instance causing numerical errors.

* Small fixes.

* Remove redundant includes.

* Fix namespace name error.

* Script for automatic testing and logging convolution fwd UTs

* Comment out numactl cmd.

* Refine weights initalization and relax rtol for fp16

* Move test_util.hpp to check_err.hpp

* Refine weights initalization and relax rtol for fp16

* Refactor common part of test conv utils.

* Move utility function to single common place.

* Add additional common functions to utility.

* Refactor convnd_fwd_xdl examples.

* Remove redundant files.
* Unify structure.

* Add constructor to ConvParams.

* And add input parameters validation.

* Modify conv examples to use single utility file.

* Remove check_error from host_tensor.hpp

* Get rid of check_indices function.

* Remove bf16_to_f32 function overload for scalars.

* Fix namespace.

* Add half_float::half for check_err.

* Fix conv params size in UT.

* Fix weights initialization for int8.

* Fix weights initialization for int8.

* Add type_convert when store output in ref conv 1D.

* Get back old conv2d_fwd_xdl operation.

* Silence conv debug print.

* format

* clean

* clean

* Fix merge.

* Fix namespace for check_err

* Formatting.

* Fix merge artifacts.

* Remove deleted header.

* Fix some includes and use ck::utils::check_err.

* Remove unused check_indices restored by previous merge.

* Fix namespaces after merge.

* Fix compilation error.

* Small fixes.

* Use common functions.
* Fix filename
* Fix namespaces.

* Fix merge artifact - retrieve removed by accident fun.

* Fix ConvForwardSpecialization.

* Adhere to coding style rules.

* Fix merge artifacts.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent 6717168c
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
...@@ -227,7 +229,7 @@ int main(int argc, char* argv[]) ...@@ -227,7 +229,7 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_f32_result); ck::utils::check_err(c_m_n_device_f32_result.mData, c_m_n_host_result.mData);
} }
return 0; return 0;
......
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
...@@ -196,7 +198,7 @@ int main(int argc, char* argv[]) ...@@ -196,7 +198,7 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
} }
return 0; return 0;
......
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
...@@ -219,7 +221,7 @@ int main(int argc, char* argv[]) ...@@ -219,7 +221,7 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
} }
return 0; return 0;
......
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "print.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -244,6 +246,6 @@ int main(int argc, char* argv[]) ...@@ -244,6 +246,6 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
} }
} }
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "print.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -230,6 +232,6 @@ int main(int argc, char* argv[]) ...@@ -230,6 +232,6 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
} }
} }
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "print.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -248,6 +250,6 @@ int main(int argc, char* argv[]) ...@@ -248,6 +250,6 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
} }
} }
add_example_executable(example_conv2d_fwd_xdl_fp16 conv2d_fwd_xdl_fp16.cpp)
add_example_executable(example_conv2d_fwd_xdl_int8 conv2d_fwd_xdl_int8.cpp)
# Instructions for ```example_conv2d_fwd_xdl```
## Run ```example_conv2d_fwd_xdl```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_conv2d_fwd_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.43206 ms, 102.486 TFlops, 232.947 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_fwd.hpp"
#include "convolution_utility.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvFwdDefault, // ConvForwardSpecialization
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
using ReferenceConvFwdInstance = ck::tensor_operation::host::
ReferenceConvFwd<InDataType, WeiDataType, OutDataType, InElementOp, WeiElementOp, OutElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 19)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
const std::vector<ck::index_t> conv_filter_strides{conv_stride_h, conv_stride_w};
const std::vector<ck::index_t> conv_filter_dilations{conv_dilation_h, conv_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
const auto output_spatial_lengths =
ck::tensor_operation::ConvolutionUtility::ComputeOutputSpatialLengths({Hi, Wi},
{Y, X},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t H,
std::size_t W,
auto layout) {
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto ref_conv = ReferenceConvFwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
}
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_fwd.hpp"
#include "convolution_utility.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using OutDataType = int8_t;
using AccDataType = int32_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
int8_t, // InDataType
int8_t, // WeiDataType
int8_t, // OutDataType
int32_t, // AccDataType
PassThrough, // InElementwiseOperation
PassThrough, // WeiElementwiseOperation
PassThrough, // OutElementwiseOperation
ConvFwdDefault, // ConvForwardSpecialization
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
16, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
using ReferenceConvFwdInstance = ck::tensor_operation::host::
ReferenceConvFwd<InDataType, WeiDataType, OutDataType, InElementOp, WeiElementOp, OutElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 19)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
const std::vector<ck::index_t> conv_filter_strides{conv_stride_h, conv_stride_w};
const std::vector<ck::index_t> conv_filter_dilations{conv_dilation_h, conv_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
const auto output_spatial_lengths =
ck::tensor_operation::ConvolutionUtility::ComputeOutputSpatialLengths({Hi, Wi},
{Y, X},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t H,
std::size_t W,
auto layout) {
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-1, 1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-1, 1});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto ref_conv = ReferenceConvFwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
}
}
...@@ -4,17 +4,20 @@ ...@@ -4,17 +4,20 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "conv_fwd_util.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp" #include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd_bias_activation.hpp" #include "reference_conv_fwd_bias_activation.hpp"
#include "convolution_utility.hpp" #include "tensor_layout.hpp"
namespace {
using InDataType = ck::half_t; using InDataType = ck::half_t;
using WeiDataType = ck::half_t; using WeiDataType = ck::half_t;
...@@ -86,146 +89,157 @@ using ReferenceConvFwdInstance = ...@@ -86,146 +89,157 @@ using ReferenceConvFwdInstance =
WeiElementOp, WeiElementOp,
OutElementOp>; OutElementOp>;
int main(int argc, char* argv[]) void PrintUseMsg()
{ {
bool do_verification = 0; std::cout << "arg1: verification (0=no, 1=yes)\n"
int init_method = 0; << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
int nrepeat = 5; << "arg3: run kernel # of times (>1)\n"
<< "Following arguments:\n"
// Conv shape << " N, K, C, \n"
ck::index_t N = 128; << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
ck::index_t K = 256; << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
ck::index_t C = 192; << " <strides>, (ie Sy, Sx for 2D)\n"
ck::index_t Y = 3; << " <dilations>, (ie Dy, Dx for 2D)\n"
ck::index_t X = 3; << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
ck::index_t Hi = 71; << " <right padding>, (ie RightPy, RightPx for 2D)\n"
ck::index_t Wi = 71; << std::endl;
ck::index_t conv_stride_h = 2; }
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1; ck::utils::conv::ConvParams ParseConvParams(int argc, char* argv[])
ck::index_t conv_dilation_w = 1; {
ck::index_t in_left_pad_h = 1; // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::index_t in_left_pad_w = 1; int num_dim_spatial = 2;
ck::index_t in_right_pad_h = 1; int conv_args = 3 + num_dim_spatial * 6;
ck::index_t in_right_pad_w = 1; int cmdline_nargs = conv_args + 4;
if(cmdline_nargs != argc)
if(argc == 4)
{ {
do_verification = std::stoi(argv[1]); PrintUseMsg();
init_method = std::stoi(argv[2]); exit(0);
nrepeat = std::stoi(argv[3]);
} }
else if(argc == 19)
ck::utils::conv::ConvParams params;
int arg_idx = 4;
params.num_dim_spatial = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // anonymous namespace
int main(int argc, char* argv[])
{
using namespace ck::utils::conv;
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
const int num_dim_spatial = 2;
ck::utils::conv::ConvParams params;
if(argc >= 4)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]); nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
} }
else
if(argc >= 5)
{ {
printf("arg1: verification (0=no, 1=yes)\n"); params = ParseConvParams(argc, argv);
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
} }
const std::vector<ck::index_t> conv_filter_strides{conv_stride_h, conv_stride_w}; std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
const std::vector<ck::index_t> conv_filter_dilations{conv_dilation_h, conv_dilation_w}; static_cast<std::size_t>(params.C)};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w}; input_dims.insert(std::end(input_dims),
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w}; std::begin(params.input_spatial_lengths),
const auto output_spatial_lengths = std::end(params.input_spatial_lengths));
ck::tensor_operation::ConvolutionUtility::ComputeOutputSpatialLengths({Hi, Wi},
{Y, X}, std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
conv_filter_strides, static_cast<std::size_t>(params.C)};
conv_filter_dilations, filter_dims.insert(std::end(filter_dims),
input_left_pads, std::begin(params.filter_spatial_lengths),
input_right_pads); std::end(params.filter_spatial_lengths));
const ck::index_t Ho = output_spatial_lengths[0]; const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
const ck::index_t Wo = output_spatial_lengths[1]; std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.K)};
// tensor layout output_dims.insert(std::end(output_dims),
auto f_host_tensor_descriptor = [](std::size_t N_, std::begin(output_spatial_lengths),
std::size_t C_, std::end(output_spatial_lengths));
std::size_t H,
std::size_t W, Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
auto layout) { Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value || Tensor<OutDataType> host_output(
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value || get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value) Tensor<OutDataType> device_output(
{ get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector // bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k( Tensor<OutDataType> bias(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(params.K)})));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "input: " << input.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl; std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl; std::cout << "output: " << host_output.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl; std::cout << "bias: " << bias.mDesc << std::endl;
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5}); weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}); bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break; break;
default: default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0}); input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5}); weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0}); bias.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
} }
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace()); DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());
out_n_k_ho_wo_device_result.mDesc.GetElementSpace()); DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data()); wei_device_buf.ToDevice(weights.mData.data());
bias_device_buf.ToDevice(bias_k.mData.data()); bias_device_buf.ToDevice(bias.mData.data());
auto conv = DeviceConvFwdInstance{}; auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker(); auto invoker = conv.MakeInvoker();
...@@ -234,16 +248,16 @@ int main(int argc, char* argv[]) ...@@ -234,16 +248,16 @@ int main(int argc, char* argv[])
static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()), static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()), static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()), static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
N, params.N,
K, params.K,
C, params.C,
std::vector<ck::index_t>{Hi, Wi}, params.input_spatial_lengths,
std::vector<ck::index_t>{Y, X}, params.filter_spatial_lengths,
std::vector<ck::index_t>{Ho, Wo}, output_spatial_lengths,
conv_filter_strides, params.conv_filter_strides,
conv_filter_dilations, params.conv_filter_dilations,
input_left_pads, params.input_left_pads,
input_right_pads, params.input_right_pads,
InElementOp{}, InElementOp{},
WeiElementOp{}, WeiElementOp{},
OutElementOp{}); OutElementOp{});
...@@ -257,16 +271,19 @@ int main(int argc, char* argv[]) ...@@ -257,16 +271,19 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, nrepeat); float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = get_flops(
params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) + std::size_t num_btype =
sizeof(WeiDataType) * (K * C * Y * X) + get_btype<InDataType, WeiDataType, OutDataType>(params.N,
sizeof(OutDataType) * (N * K * Ho * Wo) + sizeof(OutDataType) * (K); params.C,
params.K,
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths) +
sizeof(OutDataType) * (params.K);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl; << std::endl;
...@@ -275,21 +292,20 @@ int main(int argc, char* argv[]) ...@@ -275,21 +292,20 @@ int main(int argc, char* argv[])
auto ref_conv = ReferenceConvFwdInstance{}; auto ref_conv = ReferenceConvFwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker(); auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi, auto ref_argument = ref_conv.MakeArgument(input,
wei_k_c_y_x, weights,
out_n_k_ho_wo_host_result, host_output,
bias_k, bias,
conv_filter_strides, params.conv_filter_strides,
conv_filter_dilations, params.conv_filter_dilations,
input_left_pads, params.input_left_pads,
input_right_pads, params.input_right_pads,
InElementOp{}, InElementOp{},
WeiElementOp{}, WeiElementOp{},
OutElementOp{}); OutElementOp{});
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data());
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data()); ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
} }
} }
...@@ -4,17 +4,20 @@ ...@@ -4,17 +4,20 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "conv_fwd_util.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp" #include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd_bias_activation_add.hpp" #include "reference_conv_fwd_bias_activation_add.hpp"
#include "convolution_utility.hpp" #include "tensor_layout.hpp"
namespace {
using InDataType = ck::half_t; using InDataType = ck::half_t;
using WeiDataType = ck::half_t; using WeiDataType = ck::half_t;
...@@ -83,154 +86,166 @@ using ReferenceConvFwdInstance = ...@@ -83,154 +86,166 @@ using ReferenceConvFwdInstance =
WeiElementOp, WeiElementOp,
OutElementOp>; OutElementOp>;
int main(int argc, char* argv[]) void PrintUseMsg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "Following arguments:\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams ParseConvParams(int argc, char* argv[])
{ {
bool do_verification = 0; // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int init_method = 0; int num_dim_spatial = 2;
int nrepeat = 5; int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 4;
// Conv shape if(cmdline_nargs != argc)
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{ {
do_verification = std::stoi(argv[1]); PrintUseMsg();
init_method = std::stoi(argv[2]); exit(0);
nrepeat = std::stoi(argv[3]); }
ck::utils::conv::ConvParams params;
int arg_idx = 4;
params.num_dim_spatial = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
} }
else if(argc == 19) params.conv_filter_strides.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // anonymous namespace
int main(int argc, char* argv[])
{
using namespace ck::utils::conv;
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
const int num_dim_spatial = 2;
ck::utils::conv::ConvParams params;
if(argc >= 4)
{ {
do_verification = std::stoi(argv[1]); do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]); init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]); nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
} }
else
if(argc >= 5)
{ {
printf("arg1: verification (0=no, 1=yes)\n"); params = ParseConvParams(argc, argv);
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
} }
const std::vector<ck::index_t> conv_filter_strides{conv_stride_h, conv_stride_w}; std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
const std::vector<ck::index_t> conv_filter_dilations{conv_dilation_h, conv_dilation_w}; static_cast<std::size_t>(params.C)};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w}; input_dims.insert(std::end(input_dims),
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w}; std::begin(params.input_spatial_lengths),
const auto output_spatial_lengths = std::end(params.input_spatial_lengths));
ck::tensor_operation::ConvolutionUtility::ComputeOutputSpatialLengths({Hi, Wi},
{Y, X}, std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
conv_filter_strides, static_cast<std::size_t>(params.C)};
conv_filter_dilations, filter_dims.insert(std::end(filter_dims),
input_left_pads, std::begin(params.filter_spatial_lengths),
input_right_pads); std::end(params.filter_spatial_lengths));
const ck::index_t Ho = output_spatial_lengths[0]; const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
const ck::index_t Wo = output_spatial_lengths[1]; std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.K)};
// tensor layout output_dims.insert(std::end(output_dims),
auto f_host_tensor_descriptor = [](std::size_t N_, std::begin(output_spatial_lengths),
std::size_t C_, std::end(output_spatial_lengths));
std::size_t H,
std::size_t W, Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
auto layout) { Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value || Tensor<OutDataType> host_output(
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value || get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value) Tensor<OutDataType> device_output(
{ get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector // bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k( Tensor<OutDataType> bias(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)}))); HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(params.K)})));
// residual: assume same layout as output tensor // residual: assume same layout as output tensor
Tensor<OutDataType> resi_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{})); Tensor<OutDataType> residual(get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "input: " << input.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl; std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl; std::cout << "output: " << host_output.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl; std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "resi_n_k_ho_wo: " << resi_n_k_ho_wo.mDesc << std::endl; std::cout << "residual: " << residual.mDesc << std::endl;
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
case 1: case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5}); weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}); bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}); residual.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break; break;
default: default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0}); input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5}); weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0}); bias.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0}); residual.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
} }
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace()); DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());
out_n_k_ho_wo_device_result.mDesc.GetElementSpace()); DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpace()); DeviceMem resi_device_buf(sizeof(OutDataType) * residual.mDesc.GetElementSpace());
DeviceMem resi_device_buf(sizeof(OutDataType) * resi_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data()); wei_device_buf.ToDevice(weights.mData.data());
bias_device_buf.ToDevice(bias_k.mData.data()); bias_device_buf.ToDevice(bias.mData.data());
resi_device_buf.ToDevice(resi_n_k_ho_wo.mData.data()); resi_device_buf.ToDevice(residual.mData.data());
const auto in_element_op = InElementOp{}; const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{}; const auto wei_element_op = WeiElementOp{};
...@@ -244,16 +259,16 @@ int main(int argc, char* argv[]) ...@@ -244,16 +259,16 @@ int main(int argc, char* argv[])
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()), static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()), static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(resi_device_buf.GetDeviceBuffer()), static_cast<const OutDataType*>(resi_device_buf.GetDeviceBuffer()),
N, params.N,
K, params.K,
C, params.C,
std::vector<ck::index_t>{Hi, Wi}, params.input_spatial_lengths,
std::vector<ck::index_t>{Y, X}, params.filter_spatial_lengths,
std::vector<ck::index_t>{Ho, Wo}, output_spatial_lengths,
conv_filter_strides, params.conv_filter_strides,
conv_filter_dilations, params.conv_filter_dilations,
input_left_pads, params.input_left_pads,
input_right_pads, params.input_right_pads,
in_element_op, in_element_op,
wei_element_op, wei_element_op,
out_element_op); out_element_op);
...@@ -267,17 +282,21 @@ int main(int argc, char* argv[]) ...@@ -267,17 +282,21 @@ int main(int argc, char* argv[])
float ave_time = invoker.Run(argument, nrepeat); float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t flop = get_flops(
params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) + std::size_t num_btype =
sizeof(WeiDataType) * (K * C * Y * X) + get_btype<InDataType, WeiDataType, OutDataType>(params.N,
sizeof(OutDataType) * (N * K * Ho * Wo) + sizeof(OutDataType) * (K) + params.C,
sizeof(OutDataType) * (N * K * Ho * Wo); params.K,
params.input_spatial_lengths,
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; params.filter_spatial_lengths,
output_spatial_lengths) +
sizeof(OutDataType) * (params.K) +
sizeof(OutDataType) *
(params.N * params.K * output_spatial_lengths[0] * output_spatial_lengths[1]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl; << std::endl;
...@@ -286,23 +305,22 @@ int main(int argc, char* argv[]) ...@@ -286,23 +305,22 @@ int main(int argc, char* argv[])
auto ref_conv = ReferenceConvFwdInstance{}; auto ref_conv = ReferenceConvFwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker(); auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi, auto ref_argument = ref_conv.MakeArgument(input,
wei_k_c_y_x, weights,
out_n_k_ho_wo_host_result, host_output,
bias_k, bias,
resi_n_k_ho_wo, residual,
conv_filter_strides, params.conv_filter_strides,
conv_filter_dilations, params.conv_filter_dilations,
input_left_pads, params.input_left_pads,
input_right_pads, params.input_right_pads,
in_element_op, in_element_op,
wei_element_op, wei_element_op,
out_element_op); out_element_op);
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data());
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data()); ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
} }
} }
add_example_executable(example_conv3d_fwd_xdl conv3d_fwd_xdl.cpp)
# Instructions for ```example_conv3d_fwd_xdl```
## Run ```example_conv3d_fwd_xdl```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 24: N, K, C, Z, Y, X, Di, Hi, Wi, Sz, Sy, Sx, Dz, Dy, Dx, leftPz, LeftPy, LeftPx, RightPz, RightPy, RightPx
./bin/example_conv3d_fwd_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
wei: dim 5, lengths {256, 3, 3, 3, 192}, strides {5184, 1728, 576, 192, 1}
out: dim 5, lengths {4, 36, 36, 36, 256}, strides {11943936, 331776, 9216, 256, 1}
num_batches_of_GEMM = 1
a_grid_desc_k0_m_k1{648, 186624, 8}
b_grid_desc_k0_n_k1{648, 256, 8}
c_grid_desc_m_n{ 186624, 256}
launch_and_time_kernel: grid_dim {1458, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 4.58795 ms, 107.965 TFlops, 141.23 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp"
#include "device_conv3d_fwd_naive_ndhwc_kzyxc_ndhwk.hpp"
#include "convolution_utility.hpp"
// convolution data type
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConv3dFwdInstance = ck::tensor_operation::device::
DeviceConv3dFwdXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K<
InDataType, // InData
WeiDataType, // WeiData
OutDataType, // OutData
AccDataType, // AccData
InElementOp, // InElementwise Operation
WeiElementOp, // WeiElementwise Operation
OutElementOp, // OutElementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
8, // K1. K0PerBlock * K1 = KPerBlock
32, // MPerXDL
32, // NPerXDL. Each XDL computes a matrix of size (MPerXDL, NPerBlock)
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
int main(int argc, char* argv[])
{
bool do_verification = false;
int init_method = 0;
int nrepeat = 5;
// convolution shape
ck::index_t N = 4;
ck::index_t K = 256;
ck::index_t C = 192;
std::vector<ck::index_t> in_spatial_lengths = {71, 71, 71};
std::vector<ck::index_t> filter_spatial_lengths = {3, 3, 3};
std::vector<ck::index_t> conv_filter_strides = {2, 2, 2};
std::vector<ck::index_t> conv_filter_dilations = {1, 1, 1};
std::vector<ck::index_t> in_left_pads = {1, 1, 1};
std::vector<ck::index_t> in_right_pads = {1, 1, 1};
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 25)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
filter_spatial_lengths[0] = std::stoi(argv[7]);
filter_spatial_lengths[1] = std::stoi(argv[8]);
filter_spatial_lengths[2] = std::stoi(argv[9]);
in_spatial_lengths[0] = std::stoi(argv[10]);
in_spatial_lengths[1] = std::stoi(argv[11]);
in_spatial_lengths[2] = std::stoi(argv[12]);
conv_filter_strides[0] = std::stoi(argv[13]);
conv_filter_strides[1] = std::stoi(argv[14]);
conv_filter_strides[2] = std::stoi(argv[15]);
conv_filter_dilations[0] = std::stoi(argv[16]);
conv_filter_dilations[1] = std::stoi(argv[17]);
conv_filter_dilations[2] = std::stoi(argv[18]);
in_left_pads[0] = std::stoi(argv[19]);
in_left_pads[1] = std::stoi(argv[20]);
in_left_pads[2] = std::stoi(argv[21]);
in_right_pads[0] = std::stoi(argv[22]);
in_right_pads[1] = std::stoi(argv[23]);
in_right_pads[2] = std::stoi(argv[24]);
}
else
{
printf("Usage: 3 or 24 input arguments\n");
printf(" arg1: verification (0=no, 1=yes)\n");
printf(" arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf(" arg3: run kernel # of times (>1)\n");
printf(" arg4 to 24: N, K, C, Z, Y, X, Di, Hi, Wi, Sz, Sy, Sz, Dz, Dy, Dx, LeftPz, LeftPy, "
"LeftPz, RightPz, RightPy, RightPx\n");
exit(0);
}
auto conv3d = DeviceConv3dFwdInstance{};
const auto out_spatial_lengths =
ck::tensor_operation::ConvolutionUtility::ComputeOutputSpatialLengths(
in_spatial_lengths,
filter_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
in_left_pads,
in_right_pads);
Tensor<InDataType> in(
{N, in_spatial_lengths[0], in_spatial_lengths[1], in_spatial_lengths[2], C});
Tensor<WeiDataType> wei(
{K, filter_spatial_lengths[0], filter_spatial_lengths[1], filter_spatial_lengths[2], C});
Tensor<OutDataType> out(
{N, out_spatial_lengths[0], out_spatial_lengths[1], out_spatial_lengths[2], K});
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out.mDesc.GetElementSpace());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
// do Convolution
auto invoker = conv3d.MakeInvoker();
auto argument = conv3d.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
in_spatial_lengths,
filter_spatial_lengths,
out_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
in_left_pads,
in_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv3d.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv3d with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, nrepeat);
const auto Di = in_spatial_lengths[0];
const auto Hi = in_spatial_lengths[1];
const auto Wi = in_spatial_lengths[2];
const auto Do = out_spatial_lengths[0];
const auto Ho = out_spatial_lengths[1];
const auto Wo = out_spatial_lengths[2];
const auto Z = filter_spatial_lengths[0];
const auto Y = filter_spatial_lengths[1];
const auto X = filter_spatial_lengths[2];
std::size_t flop = std::size_t(2) * N * K * Do * Ho * Wo * C * Z * Y * X;
std::size_t num_btype = sizeof(InDataType) * N * Di * Hi * Wi * C +
sizeof(WeiDataType) * K * Z * Y * X * C +
sizeof(OutDataType) * N * Do * Ho * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
out_device_buf.FromDevice(out.mData.data());
if(do_verification)
{
DeviceMem out_ref_device_buf(sizeof(OutDataType) * N * Do * Ho * Wo * K);
using DeviceConv3dFwdNaive = ck::tensor_operation::device::
DeviceConv3dFwdNaive_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho_Wo_K<
InDataType,
WeiDataType,
OutDataType,
AccDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
auto conv3d_naive = DeviceConv3dFwdNaive{};
auto invoker_naive = conv3d_naive.MakeInvoker();
auto argument_naive = conv3d_naive.MakeArgument(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_ref_device_buf.GetDeviceBuffer()),
N,
K,
C,
in_spatial_lengths,
filter_spatial_lengths,
out_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
in_left_pads,
in_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv3d_naive.IsSupportedArgument(argument_naive))
{
throw std::runtime_error(
"wrong! device_conv3d_naive does NOT support the specified compilation parameters");
}
invoker_naive.Run(argument_naive);
Tensor<OutDataType> out_ref(
{N, out_spatial_lengths[0], out_spatial_lengths[1], out_spatial_lengths[2], K});
out_ref_device_buf.FromDevice(out_ref.mData.data());
check_error(out_ref, out);
}
return 0;
}
add_example_executable(example_convnd_fwd_xdl convnd_fwd_xdl.cpp) add_example_executable(example_convnd_fwd_xdl convnd_fwd_xdl.cpp)
add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
...@@ -2,8 +2,10 @@ ...@@ -2,8 +2,10 @@
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <type_traits> #include <type_traits>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "conv_utils.hpp" #include "conv_fwd_util.hpp"
#include "device.hpp" #include "device.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
...@@ -13,6 +15,8 @@ ...@@ -13,6 +15,8 @@
#include "reference_conv_fwd.hpp" #include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
namespace {
using InDataType = float; using InDataType = float;
using WeiDataType = float; using WeiDataType = float;
using OutDataType = float; using OutDataType = float;
...@@ -80,7 +84,7 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd< ...@@ -80,7 +84,7 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
OutElementOp, OutElementOp,
NumDimSpatial>; NumDimSpatial>;
DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial) DeviceConvFwdBasePtr get_conv_instance(int num_dim_spatial)
{ {
switch(num_dim_spatial) switch(num_dim_spatial)
{ {
...@@ -99,7 +103,7 @@ DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial) ...@@ -99,7 +103,7 @@ DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial)
} }
} }
void PrintUseMsg() void print_use_msg()
{ {
std::cout << "arg1: verification (0=no, 1=yes)\n" std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n" << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
...@@ -116,18 +120,18 @@ void PrintUseMsg() ...@@ -116,18 +120,18 @@ void PrintUseMsg()
<< std::endl; << std::endl;
} }
ck::conv_util::ConvParams ParseConvParams(int num_dim_spatial, int argc, char* argv[]) ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, int argc, char* argv[])
{ {
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right) // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int conv_args = 3 + num_dim_spatial * 6; int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 5; int cmdline_nargs = conv_args + 5;
if(cmdline_nargs != argc) if(cmdline_nargs != argc)
{ {
PrintUseMsg(); print_use_msg();
exit(0); exit(0);
} }
ck::conv_util::ConvParams params; ck::utils::conv::ConvParams params;
int arg_idx = 5; int arg_idx = 5;
params.num_dim_spatial = num_dim_spatial; params.num_dim_spatial = num_dim_spatial;
...@@ -169,80 +173,18 @@ ck::conv_util::ConvParams ParseConvParams(int num_dim_spatial, int argc, char* a ...@@ -169,80 +173,18 @@ ck::conv_util::ConvParams ParseConvParams(int num_dim_spatial, int argc, char* a
return params; return params;
} }
HostTensorDescriptor GetOutputHostTensorDescriptor(const std::vector<std::size_t>& dims, } // anonymous namespace
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NDHWK{});
}
case 2: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NHWK{});
}
case 1: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NWK{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
HostTensorDescriptor GetFiltersHostTensorDescriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::KZYXC{});
}
case 2: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::KYXC{});
}
case 1: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::KXC{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
HostTensorDescriptor GetInputHostTensorDescriptor(const std::vector<std::size_t>& dims,
int num_dim_spatial = 2)
{
namespace tl = ck::tensor_layout::convolution;
switch(num_dim_spatial)
{
case 3: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NDHWC{});
}
case 2: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NHWC{});
}
case 1: {
return ck::conv_util::GetHostTensorDescriptor(dims, tl::NWC{});
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
using namespace ck::utils::conv;
bool do_verification = 0; bool do_verification = 0;
int init_method = 0; int init_method = 0;
int nrepeat = 5; int nrepeat = 5;
int num_dim_spatial = 2; int num_dim_spatial = 2;
ck::conv_util::ConvParams params; ck::utils::conv::ConvParams params;
if(argc >= 5) if(argc >= 5)
{ {
...@@ -254,7 +196,7 @@ int main(int argc, char* argv[]) ...@@ -254,7 +196,7 @@ int main(int argc, char* argv[])
if(argc >= 6) if(argc >= 6)
{ {
params = ParseConvParams(num_dim_spatial, argc, argv); params = parse_conv_params(num_dim_spatial, argc, argv);
} }
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N), std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
...@@ -276,10 +218,12 @@ int main(int argc, char* argv[]) ...@@ -276,10 +218,12 @@ int main(int argc, char* argv[])
std::begin(output_spatial_lengths), std::begin(output_spatial_lengths),
std::end(output_spatial_lengths)); std::end(output_spatial_lengths));
Tensor<InDataType> input(GetInputHostTensorDescriptor(input_dims, num_dim_spatial)); Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> weights(GetFiltersHostTensorDescriptor(filter_dims, num_dim_spatial)); Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> host_output(GetOutputHostTensorDescriptor(output_dims, num_dim_spatial)); Tensor<OutDataType> host_output(
Tensor<OutDataType> device_output(GetOutputHostTensorDescriptor(output_dims, num_dim_spatial)); get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
Tensor<OutDataType> device_output(
get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "input: " << input.mDesc << std::endl; std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights.mDesc << std::endl; std::cout << "weights: " << weights.mDesc << std::endl;
...@@ -305,7 +249,7 @@ int main(int argc, char* argv[]) ...@@ -305,7 +249,7 @@ int main(int argc, char* argv[])
wei_device_buf.ToDevice(weights.mData.data()); wei_device_buf.ToDevice(weights.mData.data());
// do GEMM // do GEMM
auto conv = GetConvInstance(num_dim_spatial); auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer(); auto invoker = conv->MakeInvokerPointer();
auto argument = auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()), conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
...@@ -334,15 +278,15 @@ int main(int argc, char* argv[]) ...@@ -334,15 +278,15 @@ int main(int argc, char* argv[])
float ave_time = invoker->Run(argument.get(), nrepeat); float ave_time = invoker->Run(argument.get(), nrepeat);
std::size_t flop = ck::conv_util::GetFlops( std::size_t flop = get_flops(
params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths); params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = std::size_t num_btype =
ck::conv_util::GetBtype<InDataType, WeiDataType, OutDataType>(params.N, get_btype<InDataType, WeiDataType, OutDataType>(params.N,
params.C, params.C,
params.K, params.K,
params.input_spatial_lengths, params.input_spatial_lengths,
params.filter_spatial_lengths, params.filter_spatial_lengths,
output_spatial_lengths); output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time; float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time;
...@@ -367,7 +311,8 @@ int main(int argc, char* argv[]) ...@@ -367,7 +311,8 @@ int main(int argc, char* argv[])
ref_invoker.Run(ref_argument); ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data()); out_device_buf.FromDevice(device_output.mData.data());
check_error(host_output, device_output); ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
}; };
switch(num_dim_spatial) switch(num_dim_spatial)
......
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_fwd_util.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
namespace {
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConvFwdBasePtr =
ck::tensor_operation::device::DeviceConvFwdPtr<InElementOp, WeiElementOp, OutElementOp>;
template <ck::index_t NumDimSpatial>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
AccDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
template <ck::index_t NumDimSpatial>
using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
DeviceConvFwdBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvNDFwdInstance<3>>();
}
case 2: {
return std::make_unique<DeviceConvNDFwdInstance<2>>();
}
case 1: {
return std::make_unique<DeviceConvNDFwdInstance<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, int argc, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 5;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(0);
}
ck::utils::conv::ConvParams params;
int arg_idx = 5;
params.num_dim_spatial = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // anonymous namespace
int main(int argc, char* argv[])
{
using namespace ck::utils::conv;
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
int num_dim_spatial = 2;
ck::utils::conv::ConvParams params;
if(argc >= 5)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
}
if(argc >= 6)
{
params = parse_conv_params(num_dim_spatial, argc, argv);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.C)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths),
std::end(params.input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
static_cast<std::size_t>(params.C)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths),
std::end(params.filter_spatial_lengths));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> host_output(get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
Tensor<OutDataType> device_output(get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "output: " << host_output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(weights.mData.data());
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv->IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker->Run(argument.get(), nrepeat);
std::size_t flop = get_flops(
params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = get_btype<InDataType, WeiDataType, OutDataType>(
params.N,
params.C,
params.K,
params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto verify_f = [&input, &weights, &host_output, &params, &out_device_buf, &device_output](
const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights,
host_output,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data());
ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvNDFwdInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvNDFwdInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvNDFwdInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
}
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_fwd_util.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
namespace {
using InDataType = int8_t;
using WeiDataType = int8_t;
using OutDataType = int8_t;
using AccDataType = int32_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConvFwdBasePtr =
ck::tensor_operation::device::DeviceConvFwdPtr<InElementOp, WeiElementOp, OutElementOp>;
template <ck::index_t NumDimSpatial>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
AccDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
16, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
16, // ABlockTransferSrcScalarPerVector
16, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
16, // BBlockTransferSrcScalarPerVector
16, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
template <ck::index_t NumDimSpatial>
using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
DeviceConvFwdBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvNDFwdInstance<3>>();
}
case 2: {
return std::make_unique<DeviceConvNDFwdInstance<2>>();
}
case 1: {
return std::make_unique<DeviceConvNDFwdInstance<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, int argc, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 5;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(0);
}
ck::utils::conv::ConvParams params;
int arg_idx = 5;
params.num_dim_spatial = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // anonymous namespace
int main(int argc, char* argv[])
{
using namespace ck::utils::conv;
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
int num_dim_spatial = 2;
ck::utils::conv::ConvParams params;
if(argc >= 5)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
}
if(argc >= 6)
{
params = parse_conv_params(num_dim_spatial, argc, argv);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.C)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths),
std::end(params.input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
static_cast<std::size_t>(params.C)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths),
std::end(params.filter_spatial_lengths));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> host_output(get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
Tensor<OutDataType> device_output(get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "output: " << host_output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(weights.mData.data());
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv->IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker->Run(argument.get(), nrepeat);
std::size_t flop = get_flops(
params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
std::size_t num_btype = get_btype<InDataType, WeiDataType, OutDataType>(
params.N,
params.C,
params.K,
params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto verify_f = [&input, &weights, &host_output, &params, &out_device_buf, &device_output](
const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights,
host_output,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data());
ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvNDFwdInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvNDFwdInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvNDFwdInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
}
...@@ -4,6 +4,8 @@ ...@@ -4,6 +4,8 @@
#include <cstdlib> #include <cstdlib>
#include <stdlib.h> #include <stdlib.h>
#include <half.hpp> #include <half.hpp>
#include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "print.hpp" #include "print.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -247,6 +249,6 @@ int main(int argc, char* argv[]) ...@@ -247,6 +249,6 @@ int main(int argc, char* argv[])
in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data()); in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());
check_error(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result); ck::utils::check_err(in_n_c_hi_wi_device_result.mData, in_n_c_hi_wi_host_result.mData);
} }
} }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment