"vscode:/vscode.git/clone" did not exist on "1b221a2c953010212ee06e86cdc5c0f32ce25857"
reduce_blockwise.cpp 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
16
#include "host_reduction.hpp"
Qianfeng's avatar
Qianfeng committed
17

18
19
20
21
22
23
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"

using namespace ck;
using namespace ck::tensor_operation::device;

24
25
using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
26
27
using AccDataType = float;

28
29
30
using HostInDataType  = half_float::half;
using HostOutDataType = half_float::half;
using HostAccDataType = float;
31

Qianfeng's avatar
Qianfeng committed
32
33
constexpr int Rank         = 4;
constexpr int NumReduceDim = 3;
34

35
36
37
38
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr NanPropagation NanOpt     = NanPropagation::PROPAGATE_NAN;
constexpr bool PropagateNan         = (NanOpt == NanPropagation::NOT_PROPAGATE_NAN) ? false : true;
constexpr ReduceTensorIndices IndicesOpt = ReduceTensorIndices::NO_INDICES;
39
40
41
42
43
44
45

using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;

46
47
48
using DeviceReduceInstance = DeviceReduceBlockWise<InDataType,
                                                   AccDataType,
                                                   OutDataType,
49
                                                   Rank,
Qianfeng's avatar
Qianfeng committed
50
                                                   NumReduceDim,
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                                                   ReduceOperation,
                                                   InElementwiseOperation,
                                                   AccElementwiseOperation,
                                                   PropagateNan,
                                                   false,
                                                   256,
                                                   4,
                                                   64,
                                                   1,
                                                   1,
                                                   0,
                                                   1,
                                                   1>;

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"scales", required_argument, nullptr, 'S'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    template <typename T>
    static T getSingleValueFromString(const std::string& valueStr)
    {
        std::istringstream iss(valueStr);

        T ret;

        iss >> ret;

        return (ret);
    };

    template <typename T>
    static std::vector<T> getTypeValuesFromString(const char* cstr_values)
    {
        std::string valuesStr(cstr_values);

        std::vector<T> values;
        std::size_t pos = 0;
        std::size_t new_pos;

        new_pos = valuesStr.find(',', pos);
        while(new_pos != std::string::npos)
        {
            const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);

            T val = getSingleValueFromString<T>(sliceStr);

            values.push_back(val);

            pos     = new_pos + 1;
            new_pos = valuesStr.find(',', pos);
        };

        std::string sliceStr = valuesStr.substr(pos);
        T val                = getSingleValueFromString<T>(sliceStr);

        values.push_back(val);

        return (values);
    };

    private:
    int option_index = 0;

    public:
    std::vector<size_t> inLengths;
    std::vector<float> scales;

    bool do_verification = false;

    int init_method = 1;
    int nrepeat     = 5;

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--scales or -S, comma separated two float values for alpha and beta"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
138
139
140
141
        std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
        std::cout << "Arg2 -- number of repeats to run the kernel" << std::endl;
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    };

    int processArgs(int argc, char* argv[])
    {
        unsigned int ch;

        while(1)
        {
            ch = getopt_long(argc, argv, "D:S:v:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'S':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                scales = getTypeValuesFromString<float>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
        nrepeat     = std::atoi(argv[optind]);

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

int main(int argc, char* argv[])
{
    using namespace ck::host_reduce;

Qianfeng's avatar
Qianfeng committed
204
205
206
    const std::vector<int> reduceDims{0, 1, 2};
    const std::vector<int> invariantDims{3};

207
208
209
210
211
212
    SimpleAppArgs args;

    if(args.processArgs(argc, argv) < 0)
        return (-1);

    constexpr bool op_support_indices =
213
214
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);
215
216

    constexpr bool NeedIndices =
217
        (op_support_indices && (IndicesOpt != ReduceTensorIndices::NO_INDICES));
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

    // if input is half type, no reason to use float for indiced reduction operation and must use
    // float for non-indiced reduction operation for accuracy
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, ck::half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));

    // if input is float type, no reason to use double for indiced reduction operation
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // indices option can only be used when it is really needed
    constexpr bool invalid_reduce_3 =
233
        (!op_support_indices && IndicesOpt != ReduceTensorIndices::NO_INDICES);
234
235
236
237
238
239
240
241
242
243

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(invalid_reduce)
        std::cout << "Reduction setting is not supported, exiting!" << std::endl;

    Tensor<InDataType> in(args.inLengths);

    std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
244
    if(invariantDims.empty())
245
246
        outLengths.push_back(1);
    else
Qianfeng's avatar
Qianfeng committed
247
        for(auto dim : invariantDims)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            outLengths.push_back(args.inLengths[dim]);

    Tensor<OutDataType> out_ref(outLengths);
    Tensor<OutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    float alpha = args.scales[0];
    float beta  = args.scales[1];

264
    std::size_t num_thread = 1;
265
266
267
268
269

    if(args.do_verification)
    {
        switch(args.init_method)
        {
270
271
272
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
273
            if(beta != 0.0f)
274
                out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
275
            break;
276
        case 2:
277
278
279
280
281
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            break;
        default:
282
            in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
283
            if(beta != 0.0f)
284
                out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

301
    size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
302
303
304
305
306

    DeviceMem out_indices_dev(indicesSizeInBytes);

    if(args.do_verification)
    {
307
308
309
310
311
312
313
314
        ReductionHost<HostInDataType,
                      HostAccDataType,
                      HostOutDataType,
                      ReduceOpId,
                      Rank,
                      NumReduceDim,
                      PropagateNan,
                      NeedIndices>
Qianfeng's avatar
Qianfeng committed
315
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
316

317
318
319
320
321
        hostReduce.Run(alpha,
                       reinterpret_cast<const HostInDataType*>(in.mData.data()),
                       beta,
                       reinterpret_cast<HostOutDataType*>(out_ref.mData.data()),
                       out_indices_ref.mData.data());
322
323
324
325
326
327
328
329
330
    };

    const auto i_inLengths  = to_int_vector(args.inLengths);
    const auto i_inStrides  = to_int_vector(inStrides);
    const auto i_outLengths = to_int_vector(outLengths);
    const auto i_outStrides = to_int_vector(outStrides);

    auto reduce = DeviceReduceInstance{};

331
    auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
332
333
334
335
336
337
338
339

    DeviceMem ws_dev(wsSizeInBytes);

    auto argument_ptr =
        reduce.MakeArgumentPointer(i_inLengths,
                                   i_inStrides,
                                   i_outLengths,
                                   i_outStrides,
Qianfeng's avatar
Qianfeng committed
340
                                   reduceDims,
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                                   alpha,
                                   beta,
                                   in_dev.GetDeviceBuffer(),
                                   out_dev.GetDeviceBuffer(),
                                   out_indices_dev.GetDeviceBuffer(),
                                   ws_dev.GetDeviceBuffer(),
                                   InElementwiseOperation{static_cast<int>(reduce_total_length)},
                                   AccElementwiseOperation{static_cast<int>(reduce_total_length)});

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

    float avg_time = invoker_ptr->Run(argument_ptr.get(), args.nrepeat);

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
                            invariant_total_length * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

    if(args.do_verification)
    {
        out_dev.FromDevice(out.mData.data());
        check_error(out_ref, out);

        if(NeedIndices)
        {
            out_indices_dev.FromDevice(out_indices.mData.data());
            check_indices(out_indices_ref, out_indices);
        };
    };
}