conv2d_fwd_cpu.cpp 22.3 KB
Newer Older
1
#include <sstream>
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "element_wise_operation_cpu.hpp"
#include "dynamic_buffer_cpu.hpp"
#include <omp.h>

#define AVX2_DATA_ALIGNMENT 32
carlushuang's avatar
carlushuang committed
16
17
18

#define TEST_FUSION_PASSTHROUGH 0
#define TEST_FUSION_RELU 1
carlushuang's avatar
carlushuang committed
19
20
21
22
23
#define TEST_FUSION TEST_FUSION_PASSTHROUGH

#define TEST_LAYOUT_NHWC_KYXC_NHWK 0
#define TEST_LAYOUT_NHWC_KYXCK8_NHWK 1
#define TEST_LAYOUT TEST_LAYOUT_NHWC_KYXCK8_NHWK
carlushuang's avatar
carlushuang committed
24

25
26
27
28
29
30
31
32
33
34
using F32 = float;
using F16 = ck::half_t;

namespace ck {
namespace tensor_operation {
namespace cpu {
namespace device {
namespace device_conv2d_fwd_avx2_instance {

using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
35
using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
36
37
38
39

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

40
41
42
43
44
45
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

carlushuang's avatar
carlushuang committed
46
47
48
49
50
51
52
53
54
void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

carlushuang's avatar
carlushuang committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

void add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu(
    std::vector<DeviceConvFwdPtr<PassThrough, PassThrough, Relu>>& instances);

73
74
75
76
77
78
79
80
} // namespace device_conv2d_fwd_avx2_instance
} // namespace device
} // namespace cpu
} // namespace tensor_operation
} // namespace ck

using InElementOp  = ck::tensor_operation::cpu::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
81
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
82
using OutElementOp = ck::tensor_operation::cpu::element_wise::PassThrough;
carlushuang's avatar
carlushuang committed
83
84
85
86
#endif
#if TEST_FUSION == TEST_FUSION_RELU
using OutElementOp = ck::tensor_operation::cpu::element_wise::Relu;
#endif
87
88

template <typename T>
89
90
static bool
check_out(const Tensor<T>& ref, const Tensor<T>& result, double nrms, int per_pixel_check = 0)
91
92
{
    int error_count = 0;
93
94
95
96
97
    float max_diff  = 1e-5;

    double square_difference = .0;
    double mag1              = .0;
    double mag2              = .0;
98
99
100

    for(int i = 0; i < ref.mData.size(); ++i)
    {
101
102
103
104
105
        double ri = (double)ref.mData[i];
        double pi = (double)result.mData[i];
        double d  = ri - pi;

        if(per_pixel_check)
106
        {
107
108
109
110
111
112
113
114
115
            if(max_diff < std::abs(d))
            {
                error_count++;
                printf("idx:%3d, ref:%f, res:%f (diff:%f)\n",
                       i,
                       double(ref.mData[i]),
                       double(result.mData[i]),
                       d);
            }
116
        }
117
118
119
120
121
122

        square_difference += d * d;
        if(std::abs(mag1) < std::abs(ri))
            mag1 = ri;
        if(std::abs(mag2) < std::abs(pi))
            mag2 = pi;
123
124
    }

125
126
127
128
129
130
131
132
133
134
135
    double mag = std::max({std::fabs(mag1), std::fabs(mag2), std::numeric_limits<double>::min()});
    double computed_nrms = std::sqrt(square_difference) / (std::sqrt(ref.mData.size()) * mag);

    if(computed_nrms >= nrms)
        printf("nrms:%lf, mag1:%lf, mag2:%lf, expected_nrms is %1f\n",
               computed_nrms,
               mag1,
               mag2,
               nrms);

    return computed_nrms < nrms && error_count == 0;
136
137
138
139
}

float calculate_gflops() {}

carlushuang's avatar
carlushuang committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
template <typename T>
void transpose_kyxc_2_kyxc8k(Tensor<T>& dst,
                             const Tensor<T>& src,
                             ck::index_t K,
                             ck::index_t Y,
                             ck::index_t X,
                             ck::index_t C)
{
    ck::index_t batch = K / 8;
    ck::index_t row   = 8;
    ck::index_t col   = C * Y * X;
    for(auto i_b = 0; i_b < batch; i_b++)
    {
        for(auto i_r = 0; i_r < row; i_r++)
        {
            for(auto i_c = 0; i_c < col; i_c++)
            {
                ck::index_t src_idx = i_b * row * col + i_r * col + i_c;
                ck::index_t dst_idx = i_b * col * row + i_c * row + i_r;
                dst.mData[dst_idx]  = src.mData[src_idx];
            }
        }
    }
}

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
int main(int argc, char* argv[])
{
    int data_type   = 0;
    int init_method = 0;

    // Conv shape
    ck::index_t N               = 2;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 1;
    ck::index_t conv_stride_w   = 1;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 1)
    {
        data_type   = 0;
        init_method = 1;
    }
    else if(argc == 3)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);
    }
    else if(argc == 18)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);

        N               = std::stoi(argv[3]);
        K               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        conv_stride_h   = std::stoi(argv[10]);
        conv_stride_w   = std::stoi(argv[11]);
        conv_dilation_h = std::stoi(argv[12]);
        conv_dilation_w = std::stoi(argv[13]);
        in_left_pad_h   = std::stoi(argv[14]);
        in_left_pad_w   = std::stoi(argv[15]);
        in_right_pad_h  = std::stoi(argv[16]);
        in_right_pad_w  = std::stoi(argv[17]);
    }
    else
    {
        printf("arg1: data type (0=fp32, 1=fp16)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(1);
    }

    auto Run = [&](auto input_type, auto wei_type, auto out_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                      WeiDataType,
                                                                                      OutDataType,
                                                                                      InElementOp,
                                                                                      WeiElementOp,
                                                                                      OutElementOp>;

        const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
        const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

        const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
        const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

        const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
        const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
        const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
        const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
        const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
        const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
        const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

        auto f_host_tensor_descriptor = [](std::size_t N_,
                                           std::size_t C_,
                                           std::size_t H_,
                                           std::size_t W_) {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H_, W_}),
                                        std::vector<std::size_t>({C_ * H_ * W_, 1, W_ * C_, C_}));
        };

        Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
        Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
carlushuang's avatar
carlushuang committed
263
264
265
266
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
        Tensor<WeiDataType> wei_k_c_y_x_k8(
            f_host_tensor_descriptor(K, C, Y, X)); // TODO: This is only to hold data
#endif
267
268
269
270
271
272
273
274
275
276
277
278
        Tensor<OutDataType> out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo));
        Tensor<OutDataType> out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo));

        std::cout << "in (N, C, Hi, Wi): " << in_n_c_hi_wi.mDesc << std::endl;
        std::cout << "wei(K, C,  Y,  X): " << wei_k_c_y_x.mDesc << std::endl;
        std::cout << "out(N, K, Ho, Wo): " << out_n_k_ho_wo_host_result.mDesc << std::endl;
        std::cout << "LPad(H, W):" << in_left_pad_h << "," << in_left_pad_w
                  << ", RPad(H, W):" << in_right_pad_h << "," << in_right_pad_w
                  << ", Stride(H, W):" << conv_stride_h << ", " << conv_stride_w
                  << ", Dilation(H, W):" << conv_dilation_h << ", " << conv_dilation_w
                  << ", Threads:" << omp_get_max_threads() << std::endl;

279
        int per_pixel_check = 0;
280
281
        switch(init_method)
        {
282
283
284
285
286
        case 0:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
            per_pixel_check = 1;
            break;
287
288
289
290
291
292
        case 1:

            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
            // in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
            // wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{});
293
            per_pixel_check = 1;
294
            break;
295

296
        case 2:
297
298
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
299
            break;
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        case 3:

#define PACK_32(v24, v16, v8, v0) \
    (((v24 & 0xff) << 24) | ((v16 & 0xff) << 16) | ((v8 & 0xff) << 8) | ((v0 & 0xff) << 0))

            for(auto i_n = 0; i_n < N; i_n++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_hi = 0; i_hi < Hi; i_hi++)
                    {
                        for(auto i_wi = 0; i_wi < Wi; i_wi++)
                        {
                            uint32_t v                         = PACK_32(i_n, i_c, i_hi, i_wi);
                            in_n_c_hi_wi(i_n, i_c, i_hi, i_wi) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }

            for(auto i_k = 0; i_k < K; i_k++)
            {
                for(auto i_c = 0; i_c < C; i_c++)
                {
                    for(auto i_y = 0; i_y < Y; i_y++)
                    {
                        for(auto i_x = 0; i_x < X; i_x++)
                        {
                            uint32_t v                      = PACK_32(i_k, i_c, i_y, i_x);
                            wei_k_c_y_x(i_k, i_c, i_y, i_x) = *reinterpret_cast<float*>(&v);
                        }
                    }
                }
            }
            break;
        default:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
        }

        DeviceAlignedMemCPU in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace(),
                                          AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU wei_device_buf(
            sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace(), AVX2_DATA_ALIGNMENT);
        DeviceAlignedMemCPU out_device_buf(sizeof(OutDataType) *
                                               out_n_k_ho_wo_host_result.mDesc.GetElementSpace(),
                                           AVX2_DATA_ALIGNMENT);

        in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
carlushuang's avatar
carlushuang committed
350
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
351
        wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
carlushuang's avatar
carlushuang committed
352
353
354
355
356
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
        transpose_kyxc_2_kyxc8k(wei_k_c_y_x_k8, wei_k_c_y_x, K, Y, X, C);
        wei_device_buf.ToDevice(wei_k_c_y_x_k8.mData.data());
#endif
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        // get host result
        {
            auto ref_conv    = ReferenceConvFwdInstance{};
            auto ref_invoker = ref_conv.MakeInvoker();

            auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                      wei_k_c_y_x,
                                                      out_n_k_ho_wo_host_result,
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        }

carlushuang's avatar
carlushuang committed
375
376
377
        using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
        using Relu        = ck::tensor_operation::cpu::element_wise::Relu;
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
378
379
        using DeviceConvFwdNoOpPtr = ck::tensor_operation::cpu::device::
            DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;
carlushuang's avatar
carlushuang committed
380
381
382
383
384
#endif
#if TEST_FUSION == TEST_FUSION_RELU
        using DeviceConvFwdNoOpPtr =
            ck::tensor_operation::cpu::device::DeviceConvFwdPtr<PassThrough, PassThrough, Relu>;
#endif
385
386
387
388
389
390
391
392

        // add device Conv instances
        std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;

        if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
        {
carlushuang's avatar
carlushuang committed
393
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXC_NHWK
carlushuang's avatar
carlushuang committed
394
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c(conv_ptrs);
            }
carlushuang's avatar
carlushuang committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#endif
#if TEST_FUSION == TEST_FUSION_RELU
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt_relu(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_relu(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c_relu(conv_ptrs);
            }
carlushuang's avatar
carlushuang committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#endif
#endif
#if TEST_LAYOUT == TEST_LAYOUT_NHWC_KYXCK8_NHWK
#if TEST_FUSION == TEST_FUSION_PASSTHROUGH
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c(conv_ptrs);
            }
#endif
#if TEST_FUSION == TEST_FUSION_RELU
            if(omp_get_max_threads() > 1)
            {
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_mt_relu(conv_ptrs);
                ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                    add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu(conv_ptrs);
            }
            else
            {
                if(K % 8 == 0)
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_relu(conv_ptrs);
                else
                    ck::tensor_operation::cpu::device::device_conv2d_fwd_avx2_instance::
                        add_device_conv2d_fwd_avx2_nhwc_kyxck8_nhwk_local_c_relu(conv_ptrs);
            }
#endif
carlushuang's avatar
carlushuang committed
468
#endif
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        }

        if(conv_ptrs.size() <= 0)
        {
            throw std::runtime_error("wrong! no device Conv instance found");
        }

        // profile device Conv instances
        bool success                    = true;
        double fastest_kernel_time      = std::numeric_limits<double>::max();
        std::string fastest_kernel_name = "";
        double fastest_kernel_gflops    = 0;
        for(auto& conv_ptr : conv_ptrs)
        {
            auto argument_ptr = conv_ptr->MakeArgumentPointer(
                static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                N,
                K,
                C,
                input_spatial_lengths,
                filter_spatial_lengths,
                output_spatial_lengths,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                InElementOp{},
                WeiElementOp{},
                OutElementOp{});

            if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                auto invoker_ptr = conv_ptr->MakeInvokerPointer();
504
                double time      = invoker_ptr->Run(argument_ptr.get(), StreamConfig{}, 10);
505
506
507
508
509
510
511

                double total_flop = static_cast<double>(2) * N * C * Ho * Wo * K * Y * X;

                double gflops = (total_flop * 1e-6) / time;

                out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());

512
513
514
515
                if(!check_out(out_n_k_ho_wo_host_result,
                              out_n_k_ho_wo_device_result,
                              1e-6,
                              per_pixel_check))
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << ", Time:" << time
                              << "ms, Gflops:" << gflops << std::endl;

                    if(time < fastest_kernel_time)
                    {
                        fastest_kernel_time   = time;
                        fastest_kernel_name   = conv_ptr->GetTypeString();
                        fastest_kernel_gflops = gflops;
                    }
                }
            }
            else
            {
                std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
            }
        }

        if(fastest_kernel_time != std::numeric_limits<double>::max())
        {
            std::cout << "  fastest:" << fastest_kernel_name << ", time:" << fastest_kernel_time
                      << "ms, Gflops:" << fastest_kernel_gflops << std::endl;
        }
        return 0;
        // if(success)
        // {
        //     std::cout << "test conv2d fwd cpu : Pass" << std::endl;
        //     return 0;
        // }
        // else
        // {
        //     std::cout << "test conv2d fwd cpu: Fail " << std::endl;
        //     return -1;
        // }
    };

    if(data_type == 0)
    {
        return Run(F32(), F32(), F32());
    }
    else
    {
        return 1;
    }
}